Lectures :

      • Symmetries in Action (ÀÌÁØ±Ô , ¼­¿ï´ë)   ¡æ  Lecture note
      • Hamilton vs Shroedinger (ÀÌÇÊÁø, KIAS)
      • New Horizon in Cosmos (¹Úâ¹ü, KIAS)
      • Introduction to Scaling and Renormalization in Statistical Physics (¿©ÁØÇö, °Ç±¹´ë)
         

       Special Lectures :

      • Quantum Conductance in Nanostructures (ÃÖÇüÁØ, KIAS)
      • Fractal and Renormalization (¹ÚÇü±Ô, KIAS)
      • Thousand Faces of Proteins (ÀÌÁÖ¿µ, KIAS)   ¡æ  Lecture note
      • Strong coupling effects in cavity quantum electrodynamics (¾È°æ¿ø, ¼­¿ï´ë)   ¡æ  Lecture note
      • Is CP violation challenging the Standard Model? (±Ç¿µÁØ, ¿¬¼¼´ë) 

       

    img4.gif 

                          

      •  Symmetries in Action (ÀÌÁØ±Ô , ¼­¿ï´ë)
      • <Synopsis>

         
        1. Introduction
             ( Role of symmetry in physics, Group as the mathematical language of symmetry)
        2. Some simple examples
             ( Parity, Discrete translation, 3-D rotations, 2-D and 3-D lattices, Sym- metries of        Minkowski spacetime)
        3. Group representations and use of Lie algebra
             ( Some mathematical preliminaries,     representations of SU(2), SU(N) by oscillator        algebra, Group theoretical derivation of hydrogen atomic energy levels)
        4. Supersymmetric world

                                                         

      • Hamilton vs Shroedinger (ÀÌÇÊÁø, KIAS)

        <Synopsis>

        1. Hamiltonian Formulation of Mechanics

           We review formulation of mechanics where momentum variables are on equal footing as coordinate variables, namely the Hamiltonian formulation. Free relativistic mechanics of massive and massless particles are given as examples.

        2. Hamiltoni-Jacobi v.s. Schroedinger

           In Hamilton-Jacobi formulation of classical mechanics, the value of the classical action is taken as a function of final point of trajectories, which satisfies its own partial differential equation called Hamilton-Jacobi equation.

           After a brief review of basic concepts and identities, we will solve some familiar classical mechanics problem in this formulation.
           1) Motion of massive particle in a Newtonian gravitational potential;
           2) Motion of massive and massless particles in a black hole background.

           We then attempt to make contact with Schroedinger's quantum mechanics by showing that Hamilton-Jacobi equation is an approximate form of the Schroedinger equation.

        3. Path Integral Approach to Quantum Mechanics

           Feynman's path integral formulation of quantum mechanics is very natural, once we realize the role of classical action in quantum mechanics. Here we give a standard derivation of path integral approach, and make contact with classical limit by a saddle point approximation.

        4. Dirac's Canonical Quantization

           Probably we won't be able to get to this, but if time permits, we will review an elegant theory of canonical formulation/quantization and theory of constraints by Dirac.

                        

      • New Horizon in Cosmos (¹Úâ¹ü, KIAS)
      • <Synopsis>

         º» °­ÀÇ´Â ¿ìÁÖ·Ð ºÐ¾ß¸¦ ¼Ò°³Çϰí, ÃÖ±ÙÀÇ ¼º°ú¿¡ ´ëÇØ ¼³¸íÇϰíÀÚ ÇÑ´Ù. ¿ìÁÖ·ÐÀº ¿ìÁÖ °ø°£ÀÇ ¼ºÁú°ú ÁøÈ­, ¹°ÁúÀÇ ÁøÈ­¿Í ¹°Áú ¿äµ¿ÀÇ ¼ºÀå, õüÀÇ ±â¿ø°ú ÁøÈ­ µî ¿ìÁÖÀÇ °Å½ÃÀû ¼ºÁúÀ» ¿¬±¸ÇÏ´Â ºÐ¾ßÀÌ´Ù.
         º» °­ÀÇ¿¡¼­´Â ¿ìÁַп¡ µé¾î°¡±â¿¡ ¾Õ¼­¼­ ¹°¸®Àû ¿ìÁÖ¸¦ ±¸¼ºÇϰí ÀÖ´Â ½Ã°ø°£°ú
        ¹°Áú°ú À̵éÀÌ º¸¿©ÁÖ°í ÀÖ´Â ±ÔÄ¢ÀÎ ¹°¸®¿ø¸®µéÀ» °£´ÜÈ÷ °³°üÇÒ °ÍÀÌ´Ù. ¶ÇÇÑ ÇöÀç ¿ìÁÖ·Ð ¹ßÀüÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ´Â °üÃø ¿ìÁÖ·ÐÀÇ ÁÖ ¿¬±¸ ´ë»óÀÎ ¿ÜºÎÀºÇÏ¿Í ¿ìÁÖ¹è°æº¹»ç¿¡ ´ëÇØ ¼Ò°³¸¦ ÇÒ °ÍÀÌ´Ù. ¿ìÁÖÀÇ ±¸¼º¿øµé¿¡ ´ëÇØ °³°üÀ» ÇÑ ´ÙÀ½¿¡´Â ¿ìÁÖ ±¸Á¶¿Í ±â¿øÀ» ÀÌÇØÇϱâ À§ÇØ Àηù°¡ ¹â¾Æ¿Â ÀνÄÀÇ ¿©Á¤À» »ìÆìº»´Ù.
         ±× ´ÙÀ½¿¡´Â ÃÖ±Ù 20³â°£ À̷аú °üÃøÀÇ °Ý·ÄÇÑ »óÈ£ÀÛ¿ë ¼Ó¿¡¼­ ¾ò¾îÁø ÃֽŠ¿ìÁÖ ¸ðÇüÀ» ¼Ò°³ÇϰíÀÚ ÇÑ´Ù. °ø°£ÀÇ ÁøÈ­¿Í ¹°ÁúÀÇ ¼ººÐ°ú ¾ç, ¹°Áú ¿äµ¿ÀÇ ±â¿ø°ú ÁøÈ­¿¡ ´ëÇÑ ÃÑüÀû ¼³¸íÀ» ´ã°í ÀÖ´Ù. ¸¶Áö¸·À¸·Î ¾à 1³â Àü¿¡ ¹ßÇ¥µÈ WMAP À§¼ºÀÇ ¿ìÁÖ¹è°æº¹»ç ¿äµ¿ °üÃøÀ» ÅëÇØ ÀÚ¼¼È÷ ¾Ë°Ô µÈ ¿ìÁÖÀÇ ¹°¸®Àû ¼ºÁúÀ» À½¹ÌÇØ º¼ ¿¹Á¤ÀÌ´Ù.

        [°­ÀÇ ³»¿ë]

        °¡. ¹è°æ ¼³¸í

        ³ª. ¹°¸®Àû ¿ìÁÖ
              1. °ø°£
              2. ¹°Áú
              3. ÁÖ °üÃø´ë»ó õü
                    ¤¡. ÀºÇÏ
                    ¤¤. ¿ìÁÖ¹è°æº¹»ç

        ´Ù. °£·«ÇÑ ¿ìÁÖ·ÐÀÇ ¿ª»ç
              1. °í´ë ¿ìÁÖ·Ð
              2. Çö´ë ¿ìÁÖ·ÐÀÇ ¿ª»ç

        ¶ó. ¿ìÁÖ·ÐÀÇ Ãֽе¿Çâ
              1. ÃֽŠ¿ìÁÖ ¸ðÇü
              2. WMAP À§¼ºÀÇ ¿ìÁÖ¹è°æº¹»ç °üÃø °á°ú

        =========================================================================================

        New Horizon in Cosmos
        (Changbom Park, KIAS)

        I. Introduction

        II. Physics of the evolution of the universe

              1. Space
              2. Matter
              3. Major Observables
                    a. Galaxies
                    b. Microwave Background Radiation

        III. A Brief History of Cosmology

              1. Ancient Cosmologies
              2. History of Modern Cosmology

        IV. Recent Developments in Cosmology

              1. The New Concordance Cosmological Model
              2. WMAP experiment results

                         

      • Introduction to Scaling and Renormalization in Statistical Physics (¿©ÁØÇö, °Ç±¹´ë)
      • <synopsis>

        1.  Introduction:
               Phase transitions and critical phenomena  (Ising ferromagnets, liquid-gas transitions)

        2.  Scaling and universality near critical points
                Critical exponents

        3.  Definition of the RG transformation:  block spins

        4.  Calculation of RG flow equations:
                Ising model in 1 dimension
                Ising model in 1+epsilon dimensions

        5.  General Theory:
                Fixed points
        Relevant, marginal, and irrelevant variables
        RG flow diagrams

                              

      • Quantum Conductance in Nanostructures (ÃÖÇüÁØ, KIAS)

        <Abstract>

         
        ³ª³ë¹ÌÅÍ Å©±âÀÇ ¹°Ã¼¿¡¼­ÀÇ ÀüÀÚÀüµµÇö»ó(electronic conduction)¿¡ ´ëÇÑ ¿¬±¸´Â, °íü ¹°¸®ÇÐÀÇ ÃֽŠ¿¬±¸ ºÐ¾ß ÁßÀÇ Çϳª·Î¼­, ÀÌ·ÐÀûÀÎ ¿¬±¸¿Í ½ÇÇèÀûÀÎ ¿¬±¸°¡ ¸ðµÎ Ȱ¹ßÇϸç, ÃʼÒÇü ÀüÀÚ¼ÒÀÚ¸¦ »ê¾÷ÀûÀ¸·Î °³¹ßÇÏ¿© »ç¿ëÇÏ´Â µ¥ ÇÊ¿äÇÑ ±âÃÊ Áö½Ä°ú ±â¼úÀ» Á¦°øÇÒ °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ´Ù. Àü±â¸¦ ÀüµµÇÏ´Â ¹°Ã¼°¡ ³ª³ë¹ÌÅÍ Å©±â·Î ÀÛ¾ÆÁö¸é, ±× ¹°Ã¼¸¦ µû¶ó È帣´Â ÀüÀÚÀÇ ÆÄµ¿¼ºÀÌ ÀüÀÚÀÇ ¿îµ¿À» °áÁ¤ÇÏ°Ô µÇ¾î, ¾çÀÚ¿ªÇп¡ ±âÃʸ¦ µÐ ÀÌÇØ¸¦ ÇÊ¿ä·Î ÇÏ°Ô µÇ¸ç, ÀüÀÚ±âÇÐ ¹× ¿­¿ªÇÐÀûÀ¸·Îµµ ƯÀÌÇÑ ¼ºÁúÀ» °¡Áö°Ô µÈ´Ù. º» °­ÀÇ¿¡¼­´Â ³ª³ë¹ÌÅÍ Å©±âÀÇ ¹°Ã¼¿¡¼­ ÀüÀÚ°¡ È带 ¶§, À̸¦ ÀÌÇØÇϴµ¥ ÇÊ¿äÇÑ ±âÃÊÀûÀÎ °³³ä(ballistic transport, quantization of conductance, Landauer formalism, Coulomb blockade µî)¿¡ ´ëÇÏ¿© ¼Ò°³Çϰí, ź¼Ò³ª³ëÆ©ºê (carbon nanotube) ¹× ºÐÀÚÀüÀÚ¼ÒÀÚ(molecular electronic device) µî°ú °ü·ÃµÈ Áß¿ä ¿¬±¸µé¿¡ ´ëÇØ ¼Ò°³ÇÑ´Ù.

             

      • Strong coupling effects in cavity quantum electrodynamics (¾È°æ¿ø, ¼­¿ï´ë) 
      • <Abstract>

         In this lecture I will first introduce basic principles in cavity quantum electrodynamics (QED) in terms of atomic spontaneous emission in a bounded space. After reviewing experiments and theories in the weak coupling limit briefly, I will then move to the physics in the strong coupling regime, where an atom and a radiation mode can be treated as coupled oscillators.
         I will analyze the atom-field coupled oscillators in classical, semiclassical and purely quantum mechanical pictures, respectively, and try to illustrate underlying physics.
         Equipped with such basic understanding on the subject, I will discuss a few examples such as single-atom lasers/masers, Fock-state generation, and quantum information in the cavity QED.

                        

      • Is CP violation challenging the Standard Model? (±Ç¿µÁØ, ¿¬¼¼´ë)
      • <Abstract>

         Standard ModelÀº 1960³â´ë Ãʹݿ¡ ¸¸µé¾îÁø ÀÌÈÄ·Î Áö³­ 40³â µ¿¾È Áß¼º¹ÌÀÚÀÇ Áú·®¿¡ °üÇÑ ½ÇÇè°á°ú¸¦ Á¦¿ÜÇϰí´Â ÀÔÀÚ¹°¸®ÇÐÀÇ °ÅÀÇ ¸ðµç ½ÇÇèÇö»óµéÀ» Á¤È®ÇÏ°Ô ¼³¸íÇÒ ¼ö ÀÖ¾ú´ø, ¹°¸®ÇÐÀÇ ±âº»ÀÌ·ÐÀ¸·Î ¹Þ¾Æ µé¿©Áö°í ÀÖ¾ú´Ù. ±×·¯³ª ÀÌ·ÐÀûÀ¸·Î´Â Standard Model¿¡ ¿©·¯°¡Áö ¾àÁ¡µéÀÌ ¹ß°ßµÇ°í À־, ÀÔÀÚ¹°¸®ÇÐÀÚµéÀº Standard ModelÀ» ¶Ù¾î ³Ñ´Â ´õ ±Ùº»ÀûÀÌ°í ¿ÏÀüÇÑ ¹°¸®¹ýÄ¢À» ã¾Æ ³»·Á°í ²÷ÀÓ ¾øÀÌ ¿¬±¸ÇØ ¿À°í ÀÖ¾ú´Ù.
          ÃÖ±Ù¿¡ ÀϺ» KEK ¿¬±¸¼ÒÀÇ ±¹Á¦ °øµ¿½ÇÇèÀÎ Belle ½ÇÇèÀ» ÅëÇØ¼­ ¿ìÁÖÀÇ ¹°Áú-¹Ý¹°Áú ´ëμº ±úÁüÀ» ¿¬±¸ÇÏ´Â °úÁ¤¿¡¼­ ¸Å¿ì Èï¹Ì·Î¿î °á°ú°¡ ¹ß°ßµÇ¾ú´Ù. À̰ÍÀº B Áß°£ÀÚÀÇ ºØ±«°úÁ¤ Áß
        B -> J/psi K_sÀ¸·Î ºØ±«ÇÏ´Â ±ØÈ÷ ÀϺκÐÀÇ °æ¿ì¿¡ ÇöÀç Standard Model·Î´Â µµÀúÈ÷ ¼³¸íÀÌ ¾ÈµÇ´Â »õ·Î¿î Çö»óÀ» ¹ß°ßÇÑ °ÍÀÌ´Ù.
          ÀÌ °­¿¬¿¡¼­´Â Standard ModelÀÇ ¼º°ø ¹× ÇöÀç µå·¯³ª°í ÀÖ´Â ¾àÁ¡µéÀ» °£·«È÷ µÇµ¹¾Æ º¸°í Belle ½ÇÇèÀÇ »õ·Î¿î °á°ú¸¦ ¼Ò°³Çϸç ÀÌ °á°ú°¡ Áö´Ï´ÂÀǹ̸¦ »ìÆì º¸°íÀÚ ÇÑ´Ù.