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I. SEMICLASSICAL ANALYSIS OF NORMAL
MODE SPLITTING

In the semiclassical approach, the field is treated clas-
sically (Maxwell equation) and the atom is treated quan-
tum mechanically (Schrödinger equtaion). Let us first
derive the Maxwell-Schrödinger Equations to be applied
to the normal mode splitting in an atom-cavity system.

A. Derivation of the Maxwell-Schrödinger Equations

1. Differential Equation for the Cavity Field

Let us assume that a single two-level atom is located in
the cavity. The atom is near resonant with the TEM00

mode of the cavity. Starting from one of the Maxwell
equations in Gaussian units,

∇×E = −1
c

∂B
∂t

, (1)

taking a curl on both sides and substituting

∇×B =
1
c

∂D
∂t

, (2)

and using the relation D = E + 4πP, we obtain

∇(∇ ·E)−∇2E +
1
c2

∂2E
∂t2

= −4π

c2

∂2P
∂t2

. (3)

The electric field can be decomposed into the normal
modes of the cavity:

E(x, t) =
∑
k

Ek(x, t) =
∑
k

E0kfk(x) exp(−iωkt), (4)

where k and ωk are the wave vector and the normal mode
frequency associated with the normal mode Ek, respec-
tively, and fk(x) is the mode function summarizing the
spatial dependence of the normal mode Ek. For instance,
the mode function for the TEM00 mode of a Fabry-Perot
cavity with its axis along the z axis is given by

f(x) = cos kz exp
[
−(x2 + y2)/w2

]
(5)

with w being the mode waist. The mode volume of a
particular normal mode is given by

Vk =
∫
|fk(x)|2 d3x. (6)

We assume that only a particular normal mode Ek with a
normal mode frequency of ωk is resonant with the atom.

This particular normal mode is usually the TEM00 mode
of the cavity with its mode function given by Eq. (5).
Then, Eq. (3) is replaced by

∇(∇ ·Ek)−∇2Ek +
1
c2

∂2Ek

∂t2
= −4π

c2

∂2P
∂t2

. (7)

We assume Ek is polarized along the y direction, as is
P. By noting that Ek ≡ Ekŷ ∝ exp(±ikz − iωt) with
ŷ being the unit vector in the y direction, we find in the
slowly-varying-envelope approximation that

∇ ·Ek ' ±ikẑ · Eŷ = 0,

∇2Ek ' −k2Ek;

thus, the above wave equation can be reduced to

k2Ek +
1
c2

∂2Ek

∂t2
' 4πω2

0

c2
P, (8)

where we assumed that the polarization has a slow time
variation on top of a fast oscillation at a frequency of ω0.
The polarization induced by the single atom located at
x0 can be written as

P(x, t) = ŷp(t)δ(x− x0), (9)

We also define E0k, the amplitude of the normal mode, as
E0k ≡ ŷ ·E0k exp(−iωt). Then, by multiplying fk(x) to
both sides of Eq. (8) and integrating the resulting equa-
tion over space, we obtain

k2E0k(t) +
1
c2

∂2

∂t2
E0k(t) ' 4πω2

0

c2

p(t)
Vk

fk(x0). (10)

Defining the frequency of the field as ω ≡ kc and drop-
ping off the subscript k from now on, we get

Ë0 + ω2E0 =
4πω2

0p

V
f(x0). (11)

The cavity damping is introduced phenomenologically.
Let us define 2γc as the energy decay rate of the cavity.
For p = 0 (i.e., the homogeneous equation), the cavity
field then goes like exp(iω − γc)t, so

Ė0 = (iω − γc)E0,

Ë0 = (iω − γc)2E0 ' −ω2E0 − 2iωγcE0

' −ω2E0 − 2γcĖ0,

where we assumed ω � γc. This relation yields an ho-
mogeneous differential equation

Ë0 + 2γcĖ0 + ω2E0 = 0, (12)
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which in turn instruct us to write down a differential
equation for the cavity field including the cavity damping
as

Ë0 + 2γcĖ0 + ω2E0 =
4πω2

0p

V
f(x0). (13)

2. Differential Equation for the Atomic Dipole Moment and
Population Inversion

We start from a density matrix equation,

ρ̇ = − i

h̄
[H, ρ], (14)

which is equivalent to the Schrödinger equation for a pure
state as considered here. The atom has two levels with
the upper level denoted by a and the lower level by b.
The matrix elements for the Hamiltonian operator H are

Haa = h̄ωa, Hbb = h̄ωb, Hab = −µE(t), (15)

where E(t) ≡ E(x0, t) · ŷ = ε0 cos ωt with x0 being the
atomic position, and µ (chosen to be real) being the ma-
trix element for the dipole moment operator µ̂ along the
y direction. After the rotating wave approximation, we
obtain a set of differential equations for the density ma-
trix elements:

ρ̇aa = − i

2
Ωeiωtρab + c.c.− 2γpρaa, (16a)

ρ̇ab = − i

2
Ωe−iωt(ρaa − ρbb)− iω0ρab − γpρab, (16b)

ρ̇bb = −ρ̇aa, (16c)

where atomic radiative damping is included phenomeno-
logically with 2γp, the spontaneous emission rate of level
a. Equation (16c) means that the lower level b does not
decay. We define Ω ≡ µε0/h̄, the Rabi frequency as-
sociated with the cavity field, and “c.c.” indicates the
complex conjugate of the preceding expression.

The induced dipole moment p of the atom is given by

p = Tr(µ̂ρ) = µ(ρab + ρba). (17)

We are interested in the differential equation for p.
Straightforward differentiation of p gives

ṗ

µ
= ρ̇ab + ρ̇ba

= −(iω0 + γp)ρab −
i

2
Ωe−iωt(ρaa − ρbb) + c.c., (18a)

p̈

µ
' −(iω0 + γp)ρ̇ab −

1
2
Ωωe−iωt(ρaa − ρbb) + c.c.

' (iω0 + γp)2ρab − (iω0 + γ)
i

2
Ωe−iωt(ρaa − ρbb)

−1
2
Ωωe−iωt(ρaa − ρbb) + c.c.

' −ω2
0ρab + 2iω0γpρab − Ωωe−iωt(ρaa − ρbb) + c.c.

' −ω2
0

p

µ
− 2γp

ṗ

µ
− 2Ωω0 cos ωt(ρaa − ρbb),

(18b)

where we used ω ' ω0 � γp,Ω. Therefore, the differen-
tial equation for p becomes

p̈ + 2γpṗ + ω2
0p = −2µ2

h̄
ω0Er, (19)

where r ≡ ρaa − ρbb is the population inversion. Since
the above equation contains r, we also need a differential
equation for r. By differentiating the definition of r, we
find

ṙ = ρ̇aa − ρ̇bb = (−iΩeiωtρab + c.c.)− 4γpρaa. (20)

Using the relation ρaa + ρbb = 1 for a single atom, we
obtain

ṙ + 2γp(r + 1)
= −iΩ cos ωt(ρab − ρba) + Ω sinωt(ρab + ρba)

' Ω
ω0

cos ωt
ṗ

µ
+ Ω sinωt

p

µ

=
ε

h̄ω0
cos ωtṗ +

ε

h̄
sinωtp

' Eṗ− Ėp

h̄ω0
' 2Eṗ

h̄ω0
. (21)

Equations (19) and (21) are the Maxwell-Schrödinger
equations for an arbitrary driving field E(t). For an atom
in the cavity considered in the preceding section, we iden-
tify E(t) = E0(t)f(x0). Therefore, the proper forms of
the atomic part of the Maxwell-Schrödinger equations are

p̈ + 2γpṗ + ω2
0p = −2µ2

h̄
ω0E0rf(x0), (22)

ṙ + 2γp(r + 1) =
2E0ṗ

h̄ω0
f(x0). (23)

B. Application to Normal Mode Splitting

Consider a two level atom interacting with a single-
mode of a cavity. Assume that the atom with a resonance
frequency ω0 is placed at an anti-node of the cavity mode
(so f(x0) = 1). The cavity with a resonance frequency
ωc, which is near resonant with the atom, is externally
driven by a probe laser beam with a frequency of ω, which
is near resonant with the cavity. Assume that the probe
laser is so weak that the atom is almost in its lower state
in steady state. In this situation, we do not need the
equation for the population inversion. We can simply set
r = −N for N atoms. Our coupled equations are then
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Ë + 2γcĖ + ω2
cE =

4πω2
0p

V
+ ξEL, (24)

p̈ + 2γpṗ + ω2
0p =

2µ2

h̄
ω0EN, (25)

where ξ is the probe laser coupling coefficient, EL is the
probe laser amplitude and we dropped the subscript 0 in
the electric field amplitude. In a steady state(

−ω2 − 2iωγc + ω2
c

)
E =

4πω2
0p

V
+ ξEL, (26)(

−ω2 − 2iωγp + ω2
0

)
p =

2µ2

h̄
ω0EN, (27)

By the near resonance condition

ω2 − ω2
0,c ≈ 2ω0(ω − ω0,c), (28)

and thus

(∆c + iγc)E = −2πω0p

V
− ξEL

2ω0
, (29)

(∆p + iγp)p = −µ2

h̄
EN. (30)

Solving for E gives

E =
i
(

ξEL

2ω0

)
(γp − i∆p)

Ng2
0 + (γp − i∆p)(γc − i∆c)

, (31)

where g0 is the atom-cavity coupling constant given by

g0 =
µ

h̄

√
2πh̄ω0

V
. (32)

Probe transmittance of the atom-cavity system is pro-
portional to |E|2.

T ∝
∣∣∣∣ γp − i∆p

Ng2
0 + (γp − i∆p)(γc − i∆c)

∣∣∣∣2 (33)

The denominator can be expanded as[
Ng2

0 + (γp − i∆p)(γc − i∆c)
]

×
[
Ng2

0 + (γp + i∆p)(γc + i∆c)
]

= (Ng2
0)2 + 2(γcγp −∆c∆p)(Ng2

0)

+(γ2
p + ∆2

p)(γ
2
c + ∆2

c). (34)

When ωc = ω0 (i.e., ∆c = ∆p ≡ ∆), it is simplified to

(Ng2
0)2 + 2(γcγp −∆2)(Ng2

0) + (γ2
p + ∆2)(γ2

c + ∆2)

= ∆4 − 2
[
Ng2

0 − (γ2
c + γ2

p)/2
]
∆2 +

(
Ng2

0 + γcγp

)2

= ∆4 − 2(Ng2
0 − γ2

− − γ2
+)∆2 + (Ng2

0 − γ2
− + γ2

+)2

= ∆4 − 2(Ω2 − γ2
+)∆2 + (Ω2 + γ2

+)2

= ∆4 + 2(Ω2 + γ2
+)∆2 + (Ω2 + γ2

+)2 − 4Ω2∆2

= (∆2 + Ω2 + γ2
+)2 − (2Ω∆)2

= (∆2 + Ω2 + γ2
+ − 2Ω∆)(∆2 + Ω2 + γ2

+ + 2Ω∆)

=
[
(∆− Ω)2 + γ2

+

] [
(∆ + Ω)2 + γ2

+

]
(35)

where

γ+ ≡
1
2
(γc + γp),

γ− ≡
1
2
(γc − γp),

Ω ≡
√

Ng2
0 − γ2

−. (36)

The transmittance then becomes

T ∝
∆2 + γ2

p[
(∆− Ω)2 + γ2

+

] [
(∆ + Ω)2 + γ2

+

] , (37)

which is a product of two Lorentzian curves centered
around ω0 ± Ω. In the limit of strong coupling, i.e.,
g0 � γc, γp, the separation between the two peaks is

2Ω = 2
√

Ng2
0 − γ2

− ' 2
√

Ng0. (38)

II. CLASSICAL ANALYSIS OF NORMAL MODE
SPLITTING

In this approach, both atom and field are treated clas-
sically. Consider a classical oscillator, which is made of
a point positive charge e surrounded by a uniform rigid
charge distribution of negative charge −e. The radius of
the negative charge distribution is the same as the Bohr
radius a0. Such a classical oscillator is placed in a cavity,
which is externally probed by a classical field. We want
to calculate the transmittance of the oscillator-cavity sys-
tem.

A. Susceptability of a Classical Oscillator

Suppose the charge distribution is displaced by x. The
Coulomb force is then given by

F = −e2(x/a0)3

x2
= − e2

a3
0

x = −keffx (39)

which is a restoring force with an effective spring con-
stant keff . The harmonic oscillation frequency ω0 of this
classical oscillator is thus

ω0 =

√
keff

m
=

√
e2

ma3
0

. (40)

Suppose this oscillator is driven by an electric field of
frequency ω. The equation of motion is

ẍ + 2γẋ + ω2
0x = −eE(t)

m
= −eE0

m
e−iωt, (41)

where 2γ is the damping constant (full width) and the di-
rection of the displacement x is the same as the direction
of the applied electric field. The solution is
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x(t) = − eE(t)/m

ω2
0 − 2iγω − ω2

. (42)

Suppose there are N such oscillators in a volume V . The
polarization P (t) is then

P (t) = −Nex(t)/V =
(Ne2/mV )E(t)
ω2

0 − 2iγω − ω2
≡ χE(t), (43)

where χ is the electrical susceptability given by

χ =
(Ne2/mV )

ω2
0 − 2iγω − ω2

(44)

Dielectric constant is 1 + 4πχ and its square root is the
index of refraction n.

n =
√

1 + 4πχ =

√
1 +

(4πNe2/mV )
ω2

0 − 2iγω − ω2
(45)

We define the plasma frequency ωp as

ω2
p ≡=

4πNe2

mV
. (46)

In our consideration, because of low density, the plasma
frequency ωp is much smaller than ω0, and thus we can
expand the square root in n as

n ' 1 +
1
2

ω2
p

ω2
0 − 2iγω − ω2

(47)

For near resonance, it is further simplified as

n ' 1−
ω2

p/4ω0

(ω − ω0) + iγ

=

[
1−

ω2
p

4ω0

∆p

∆2
p + γ2

]
+ i

ω2
p

4ω0

γ

∆2
p + γ2

≡ nr + ini, (48)

where nr, ni are real and imaginary parts of n.

B. Cavity Transmission

Suppose a Fabry-Perot-type cavity with a reflectance
R = |r|2 on each mirror and with a separation of L. The
cavity is filled with a medium (i.e., collection of classi-
cal oscillators) of refractive index n given by Eq. (48).
Cavity transmission is obtained by considering multiple
reflections between the mirrors and summing up all mul-
tiply reflected and transmitted components.

Et = E0(1−R)eikL
[
1 + Re2ikL + R2e4ikL + · · ·

]
=

E0(1−R)eikL

1−Re2ikL
, (49)

where k = nω/c, which is complex. Tansmittance is
given by

T =
∣∣∣∣ Et

E0

∣∣∣∣2 =
∣∣∣∣ (1−R)eikL

1−Re2ikL

∣∣∣∣2
=

(1−R)2ei(k−k∗)L

1 + R2e2i(k−k∗)L −R(e2ikL + e−2ik∗L)

=
(1−R)2e−2kiL

1 + R2e−4kiL − 2Re−2ikiL cos 2krL

=
(1−R)2e−2kiL

(1−Re−2kiL)2 + 4Re−2ikiL sin2 krL
. (50)

C. Normal Mode Splitting in the Cavity
Transmission

Now suppose the resonance frequency of the empty
cavity is ωc satisfying the resonance condition.

ωc

c
L = qπ, (51)

where q is an integer. Then the argument of sine function
at near resonance (ω ∼ ωc) can be expanded as

krL =
ω

c
L

[
1−

ω2
p

4ω0

∆p

∆2
p + γ2

]

= (∆c + ωc)
L

c

[
1−

ω2
p

4ω0

∆p

∆2
p + γ2

]

' qπ +
∆cL

c
− ωcL

c

ω2
p

4ω0

∆p

∆2
p + γ2

(52)

or

krL− qπ ' ∆cL

c
−

ω2
pL

4c

∆p

∆2
p + γ2

, (53)

where ∆c = ω−ωc and ∆p = ω−ωp. The transmittance
in Eq. (50) has maxima when the righthand side of Eq.
(53) vanishes. Of particular interest is when ∆c = ∆p =
∆ (zero atom-cavity detuning case). In this case,

∆−
ω2

p

4
∆

∆2 + γ2
= 0, (54)

or

∆ = 0, ∆ = ±
√

ω2
p

4
− γ2 (55)

In the limit of negligible damping (ωp � γ), the nonva-
nishing zeros of the sine function becomes

∆ ' ±ωp

2
= ±

√
πNe2

mV
(56)

The resulting transmittance has only two peaks at these
detunings. The detuning value ∆ = 0 does not give rise
to a peak because of strong absorption at the resonance
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frequency of the oscillator. Specifically, the first expo-
nential factor e−2kiL in the denominator in Eq. (50) be-
comes small at zero detuning, making the transmittance
become negligibly small.

Exercise
In the classical analysis, the separation of two peaks

in the transmittance is given by 2
√

πNe2/mV whereas
in the semiclassical analysis it is given by 2

√
Ng0. We

can show these seemingly different two expressions are
equivalent in fact. The proof is left as an exercise for the
winter camp participants.
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