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Chapter 3. Radiative Interactions

3.1 Review of Field Quantization
From classical electrodynamics we know that an electromagnetic field can be derived
from scalar and vector potentials, 

€ 

ϕ(r, t) and 

€ 

A(r, t). We also know that with a proper
choice of gauge the wave equations for the potentials can be greatly simplified. For a
radiation field (far away from the source) it is convenient to choose the Coulomb gauge,

€ 

∇ ⋅A(r, t) = 0.
The scalar potential then satisfies the Poisson equation as in a static case, and thus the
electric field decays like 1/r2 from the source. Therefore, the scalar potential does not
contribute to the electric field in the radiation zone. The electromagnetic field is then
given by the vector potential alone:

€ 

E(r, t) = −
1
c
∂
∂t
A(r, t), B(r, t) =∇ ×A(r, t), (3.1.1)

where the vector potential satisfies a homogeneous wave equation

€ 

∇2 −
1
c 2

∂ 2

∂t 2
 

 
 

 

 
 A(r,t) = 0. (3.1.2)

The solution of the above homogeneous equation in free space is a plane wave, which
can be represented by a sum of two opposite traveling waves

€ 

A(r, t) = ˆ e kλ
kλ

∑ Akλ exp i(k ⋅ r −ωk t)[ ] + Akλ
* exp −i(k ⋅ r −ωk t)[ ]{ }, (3.1.3)

where 

€ 

ˆ e kλ is an unit vector representing the polarization. The frequency 

€ 

ωk  is given by
the dispersion relation, 

€ 

k =ωk /c . The Coulomb gauge ensures the transversality of the
electromagnetic fields, 

€ 

k ⋅ ˆ e kλ = 0. The possible wave vectors are determined by a
boundary condition for a cubic cavity of side length of L. It is customary to employ a
periodic boundary condition (alternatively, one can consider a field in a conducting
rectangular box, of course),

€ 

eikxx = eikx (x+L ), etc, (3.1.4)
which result in an infinite set of wave vectors given by

  

€ 

k =
2π
L

Nx
ˆ i + Ny

ˆ j + Nz
ˆ k ( ), Nx,Ny,Nz = 0,±1,±2,K (3.1.5)

The number of modes per unit frequency interval is obtained by considering the number
of modes in d3k:
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€ 

2 d3k
2π /L( )3

= 2 k
2dkdΩ
2π /L( )3

= 2Vωk
2dωkdΩ
2πc( )3

, (3.1.6)

where a factor of 2 is needed for accounting for the two possible polarizations. The
number of modes per unit frequency interval is then given by

€ 

Vωk
2dΩ

4π 3c 3
.

The Hamiltonian of the electromagnetic field in the cavity is obtained by integrating the
field energy density over the cavity volume.

€ 

W =
1
8π

E2 + B2( )dV
V
∫ (3.1.7)

Exercise 1. Using the orthogonality of the plane waves with different k’s, show that

€ 

W =
V
2πc 2

ωk
2

kλ
∑ Akλ(t)

2. (3.1.8)

where 

€ 

Akλ(t) = Akλe
− iωk t .

We now introduce a new set of real variables 

€ 

Pkλ and Qkλ .

€ 

Akλ =
c
ωk

π
V
ωkQkλ + iPkλ( ), Akλ

* =
c
ωk

π
V
ωkQkλ − iPkλ( ), (3.1.9)

in terms of which the field energy becomes

€ 

W =
1
2

Pkλ
2 +ωk

2Qkλ
2( )

kλ
∑ . (3.1.10)

From the time dependence of 

€ 

˙ A kλ(t) = −iωkAkλ(t), etc, one can show the equation of
motion for 

€ 

Qkλ and Pkλ  to be

€ 

˙ Q kλ = Pkλ, ˙ P kλ = −ωk
2Qkλ, (3.1.11)

which is exactly the Hamiltonian equation one would obtain from the above field
energy while treating it a Hamiltonian with canonical variables 

€ 

Qkλ and Pkλ . Therefore,
one identify the Hamiltonian for the electromagnetic field and associated canonical
variables:

€ 

H =
1
2

Pkλ
2 +ωk

2Qkλ
2( )

kλ
∑ . (3.1.12)

Field quantization then proceeds as in the case of a harmonic oscillator. We impose
commutation relations for the canonical variables as
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€ 

Qkλ,P ′ k ′ λ [ ] = ihδk ′ k δλ ′ λ , Qkλ,Q ′ k ′ λ [ ] = Pkλ,P ′ k ′ λ [ ] = 0. (3.1.13)
We define a set of new variables as

  

€ 

akλ =
1
2hωk

ωkQkλ + iPkλ( ), akλ
+ =

1
2hωk

ωkQkλ − iPkλ( ), (3.1.14)

which then obeys

€ 

akλ,a ′ k ′ λ 
+[ ] = δk ′ k δλ ′ λ , akλ,a ′ k ′ λ [ ] = akλ

+ ,a ′ k ′ λ 
+[ ] = 0, (3.1.15)

and the Hamiltonian becomes

  

€ 

H = hωk akλ
+ akλ +1/2( )

kλ
∑ . (3.1.16)

Exercise 2. Using the commutation relations of 

€ 

akλ  and 

€ 

akλ
+ , show that 

€ 

akλ
+  is a creation

operator and 

€ 

akλ  is an annihilation operator satisfying

€ 

akλ nkλ = nkλ nkλ −1 , akλ
+ nkλ = nkλ +1 nkλ +1 , (3.1.17)

where 

€ 

nkλ  is the eigenstate of the number operator 

€ 

Nkλ = akλ
+ akλ .

Exercise 3. Show that in the Schrödinger picture (meaning the time dependence is
absorbed in the wave function) the vector potential can be written in terms of 

€ 

akλ  and

€ 

akλ
+  as

  

€ 

A(r) =
2πhc 2

ωkV
ˆ e kλ

kλ

∑ akλe
ik ⋅r + akλ

+ e−ik ⋅r{ } (3.1.18)

and the corresponding electric and magnetic field operators as

€ 

E(r) = Ekλ(− ) + Ekλ(+)[ ]
kλ
∑ , B(r) = Bkλ(− ) + Bkλ(+)[ ]

kλ
∑ , (3.1.19)

where

  

€ 

Ekλ
(− ) = i 2πhωk

V
ˆ e kλakλe

ik ⋅r, Ekλ
(+) = −i 2πhωk

V
ˆ e kλakλ

+ e− ik ⋅r,

Bkλ
(− ) = i 2πhωk

V
ˆ k × ˆ e kλ( )akλe

ik ⋅r, Bkλ
(+) = −i 2πhωk

V
ˆ k × ˆ e kλ( )akλ

+ e− ik ⋅r .
(3.1.20)

3.2 Interaction with the Radiation Fields
Total Hamiltonian can be written as

  

€ 

H = Hatom + Hfield + Hint

=
p2

2m
+V

 

 
 

 

 
 + hωk akλ

+ akλ +1/2( )
kλ
∑ + Hint ,

(3.2.1)
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where the interaction Hamiltonian is given by

  

€ 

Hint =
e
2mc

p ⋅A +A ⋅p( ) +
e2

2mc 2
A2 +

eh
2mc

σ ⋅∇ ×A

=
e
mc
p ⋅A +

e2

2mc 2
A2 +

eh
2mc

σ ⋅∇ ×A.
(3.2.2)

under the Coulomb gauge (

€ 

∇ ⋅A = 0). We shall concentrate on the leading term, which
can be written as

  

€ 

H1 =
e
mc

p ⋅A =
e
mc

2πhc 2

ωkV
p ⋅ ˆ e kλ( )

kλ

∑ akλe
ik ⋅r

H1
(−)

1 2 4 4 4 4 4 3 4 4 4 4 4 

+
e
mc

2πhc 2

ωkV
p ⋅ ˆ e kλ( )

kλ

∑ akλ
+ e−ik ⋅r

H1
(+)

1 2 4 4 4 4 4 3 4 4 4 4 4 

.

(3.2.3)
Since 

€ 

H1
(− ) is proportional to the annihilation operators, nonvanishing matrix elements

corresponding to photon absorption are

  

€ 

b;nkλ −1H1
(− ) a;nkλ =

e
m

2πh

ωkV
b;nkλ −1 p ⋅ ˆ e kλ( )akλe

ik ⋅r a;nkλ =
e
m

2πhnkλ
ωkV

b p ⋅ ˆ e kλ( )eik ⋅r a ,

(3.2.4)
where a and b denote atomic lower and upper states, respectively. The field state should
be the same before and after except the kλ mode, for which the number of photon has
been decreased by 1 due to the absorption. Similarly, nonvanishing matrix elements for

€ 

H1
(+) are in the form of

  

€ 

a;nkλ +1H1
(+) b;nkλ =

e
m

2πh

ωkV
a;nkλ +1 p ⋅ ˆ e kλ( )akλ

+ e−ik ⋅r b;nkλ =
e
m

2πh(nkλ +1)
ωkV

a p ⋅ ˆ e kλ( )e−ik ⋅r b ,

(3.2.5)
corresponding to photon emission.

Electric Dipole Approximation

If the atomic dimension is negligibly small compared to the wavelength (long

wavelength limit), the exponential factor can be approximated by 

€ 

e±ik ⋅r ≈1. The higher
order multipoles in a series expansion of the vector potential scale as d/λ with d the
dimension of the atom. Therefore, the long wavelength limit is equivalent to the electric
dipole approximation (E1). Since
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€ 

x,Hatom[ ] = x, p2 /2m[ ] = i h /m( )px,

b p a = m /ih( ) b r,Hatom[ ] a = m /ih( ) Ea − Eb( ) b r a ≅ imωk b r a ,
(3.2.6)

where   

€ 

Eb − Ea = hωba ≈ hωk  (a: lower, b: upper state) for photon absorption to occur,

and therefore,

  

€ 

b;nkλ −1H1
(− ) a;nkλ = ie 2πhωknkλ

V
b r a ⋅ ˆ e kλ . (3.2.7)

Likewise,

  

€ 

a;nkλ +1H1
(+) b;nkλ = −ie 2πhωk (nkλ +1)

V
a r b ⋅ ˆ e kλ . (3.2.8)

Exercise 4. Show that

€ 

f ;nkλ ±1H1
(±) i;nkλ = f ;nkλ ±1 er ⋅Ekλ(±)( ) i;nkλ . (3.2.9)

Unitary Transformation to the Form of Dipole Interaction

Under a unitary transformation the Hamiltonian H can be cast in a form of electric
dipole interaction. Consider a unitary operator

  

€ 

O = exp − ie /hc( )A(r, t) ⋅ r[ ]. (3.2.10)
Within a region of atomic dimension the position dependence in A can be neglected.
This assumption is equivalent to the long wavelength limit. We perform the unitary
operation on the Schrödinger equation:

  

€ 

ih ∂
∂t
ψ = Hψ. (3.2.11)

Since

  

€ 

ih ∂
∂t
O+ψ = ih∂O

+

∂t
ψ + ihO+ ∂ψ

∂t
= −

e
c

˙ A (t) ⋅ rO+ψ +O+ih∂ψ
∂t

= −
e
c

˙ A (t) ⋅ rO+ψ +O+Hψ = O+HO− e
c

˙ A (t) ⋅ r 

  
 

  
O+ψ,

(3.2.12)

the Schrödinger equation is transformed to

  

€ 

ih ∂
∂t

′ ψ = ′ H ′ ψ (3.2.13)

where

€ 

′ ψ = O+ψ, ′ H = O+HO−
e
c

˙ A (t) ⋅ r. (3.2.14)
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Then our Hamiltonian

€ 

H =
1
2m

p+
e
c
A

 

 
 

 

 
 
2

, (3.2.15)

which corresponds to both Hatom and Hint before, is transformed to

€ 

′ H =
1

2m
O+ p +

e
c

A
 

 
 

 

 
 

2

O−
e
c

˙ A (t) ⋅ r. (3.2.16)

Consider

  

€ 

pO =
h

i
∇exp − ie

hc
A(t) ⋅ r 

  
 

  
= −

h

i
ie
hc
A(t)exp ie

hc
A(t) ⋅ r 

  
 

  
+Op = −

e
c
AO+Op.

(3.2.17)
Thus

€ 

p+
e
c
A

 

 
 

 

 
 
2

O = p+
e
c
A

 

 
 

 

 
 Op =Op2, (3.2.18)

and therefore,

€ 

′ H =
p2

2m
−

e
c

˙ A (t) ⋅ r =
p2

2m
+ er ⋅E(t) =

p2

2m
−d ⋅E(t), (3.2.19)

where d=-er is the electric dipole moment operator. This result is consistent with the
result of Exercise 4. However, it should be noted that the Hamiltonian H contains not
only the electric dipole term 

€ 

p ⋅A  but also higher order terms. This seeming

contradiction is resolved by the fact that 

€ 

′ H  was obtained with the assumption that A is
position-independent, which is consistent with the long wavelength limit or the dipole

approximation, 

€ 

e±ik ⋅r ≈1. Although H seems to include higher order terms, those higher
order terms were neglected in practice in the transformation process.



7

3.5 Transition Probabilities
Consider an atom interacting with a radiation field of frequency 

€ 

ωk . Assume that only a
transition between particular two states (let us call them level a and level b) is resonant
with the radiation field. Let the transition frequency be   

€ 

ωba = Eb − Ea( ) /h > 0. The
approximation that we can neglect the other levels is called two-level approximation
and the atom in this case is called a two level system.
The transition probability from an initial state to a final state can be calculated from the
Fermi Golden Rule:

  

€ 

Wfi =
2π
h

f V i 2
δ(E f − Ei) (3.5.1)

For E1 absorption process in which the two-level atom interacts with a field mode kλ,

  

€ 

Wabs =
2π
h

b,nk −1eR ⋅Ekλ
(−) a,nk

2
δ(Eb − Ea − hωk )

=
2π
h2 e 2πhωknkλ

V
 

 
 

 

 
 

2

bR ⋅ ˆ e kλ a
2
δ(ωba −ωk )

=
4π 2e2ωknkλ

hV
bR a ⋅ ˆ e kλ

2
δ(ωba −ωk ).

(3.5.2)

When we have a distribution of modes instead of the infinitely-narrow-frequency mode,
the above expression should be multiplied by the number of modes in a frequency
interval in vacuum and integrated over all frequencies. The number of modes in a
frequency interval per polarization direction is

€ 

Vωk
2dΩ

2π( )3c 3
, (3.5.3)

and thus

  

€ 

dWabs = dωk
0

∞

∫ Vωk
2dΩ

(2π )3c 3
4π 2e2ωknkλ

hV
bR a ⋅ ˆ e kλ

2
δ(ωba −ωk )

=
e2ωk

3nkλ

2πhc 3 bR a ⋅ ˆ e kλ
2dΩ.

(3.5.4)

which then needs be integrated over all angles accounting for two possible polarization
directions. We choose the polarization directions as shown in Fig. 1.
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Fig. 1. Our choice of polarization vectors with respect to the position vector R.

Then,

  

€ 

Wabs =
e2ωba

3 nkλ
2πhc 3

bR a 2 sin2θkdΩ∫ =
e2ωba

3 n
2πhc 3

bR a 2 2π sin2θkd cosθk( )
−1

1

∫
 

 
 

 

 
 

=
e2ωba

3 n
2πhc 3

bR a 2 8π
3

 

 
 

 

 
 =

4ωba
3 e2n
3hc 3

bR a 2
=
4µab

2

3h
ωba

c
 

 
 

 

 
 
3 

 
 
 

 

 
 
 
n.

(3.5.5)
For E1 emission process, the procedure proceeds in the same way except that the result
is proportional to n+1.

  

€ 

Wem =
4µab

2

3h
ωba

c
 

 
 

 

 
 
3 

 
 
 

 

 
 
 
n +1( ). (3.5.6)

Emission can occur even in the absence of photons in the mode. Such emission is called
the spontaneous emission whereas the part proportional to n is called the stimulated
emission. The absorption with its rate proportional to n is by definition a stimulated
process. The spontaneous emission rate

  

€ 

Wsp =
4µab

2

3h
ωba

c
 

 
 

 

 
 
3

(3.5.7)

is also known as the Einstein A coefficient. The inverse of this rate is called the
radiative lifetime of the excited state. As clearly demonstrated so far, the spontaneous
emission is a true quantum mechanical effect, not explainable in the classical
electromagnetism. It is remarkable that Einstein introduced the concept of spontaneous
emission in his consideration of the black body radiation, solely based on the
thermodynamic detailed balance argument.

€ 

ˆ k 

€ 

ˆ e k1

€ 

ˆ e k 2

€ 

θ

€ 

R
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Extension to Multilevels

Suppose that the level a consists of degenerate sublevels 

€ 

αaJaMa  with degeneracy

€ 

ga (= 2Ja +1) . Likewise, the level b consists of degenerate sublevels 

€ 

αbJbMb  with
degeneracy 

€ 

gb (= 2Jb +1) . When the sublevels of level a are equally populated initially,
the absorption rate becomes

  

€ 

Wabs =
1
ga

4ωba
3 e2n
3hc 3

αbJbMb RαaJaMa
2

M aM b

∑ , (3.5.8)

Similarly, the emission rate becomes

  

€ 

Wem =
1
gb

4ωba
3 e2(n +1)
3hc 3

αbJbMb RαaJaMa
2

M aM b

∑ (3.5.9)

if the sublevels of level b are equally populated initially.
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3.8 Effects of Intense Laser Field

Dressed State Picture

When a two-state atom interacts with a near-resonant electromagnetic field, the atom
can be easily excited to the upper state and thus the transition probability calculated
before, which is valid only when the atom stays mostly in the lower state and the
probability that atom is excited is negligibly small. For the near-resonant field, we need
to sum up all orders of perturbative transition amplitudes. In the semiclassical approach,
we need to use the optical Bloch equation for a correct description of the problem. In
the quantum mechanical approach, we use the dressed picture to be discussed in this
section.
Recall that the total Hamiltonian is composed of three parts.

  

€ 

H = Hatom + Hfield + Hint

=
p2

2m
+V + hωk akλ

+ akλ +1/2( )
kλ
∑ + Hint ,

(3.8.1)

For the E1 interaction

  

€ 

Hint = −d ⋅E = er ⋅ i 2πhωk

V
ˆ e kλ akλ − akλ

+( )
 

 
 

 

 
 , (3.8.2)

for an electromagnetic mode kλ. We compose uncoupled (without Hint) atom-field states
denoted by 

€ 

g,n +1  and 

€ 

e,n , where g (e) stands for the lower (upper) state and n
indicates the number of photons in the electromagnetic field mode. Our task is to
diagonalize the total Hamiltonian in this basis. We first calculate the interaction matrix
elements between uncoupled states. Only nonzero element is

  

€ 

e,n Hint g,n +1 = ie 2πhωk

V
e r ⋅ ˆ e kλ g nkλ +1 (3.8.3)

From now on we drop the subscript kλ. If we define a coupling constant

  

€ 

g ≡
µeg

h

2πhω
V

, (3.8.4)

where 

€ 

µeg ≡ ie e r ⋅ ˆ e kλ g  (we choose the atomic state phases in such a way that 

€ 

µeg  is
real), the interaction Hamiltonian can be written as

€ 

H int =
0 g n +1

g n +1 0

 

 
 

 

 
 . (3.8.5)

In the uncoupled basis, the atom and field Hamiltonians are given by
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€ 

Hatom =
hω0 0
0 0

 

 
 

 

 
 , Hfield =

(n +1/2)hω 0
0 (n + 3/2)hω

 

 
 

 

 
 , (3.8.6)

and thus the total Hamiltonian can be written as

  

€ 

H /h =
1
2
ω0 0
0 −ω0

 

 
 

 

 
 +

(n +1/2)ω 0
0 (n + 3/2)ω

 

 
 

 

 
 +

0 g n +1
g n +1 0

 

 
 

 

 
 +

ω0

2
1 0
0 1
 

 
 

 

 
 

(3.8.7)
The last term can be dropped by rescaling the origin of energy.

Exercise 6. Show that the following Hamiltonian has the same matrix form as Eq.
(3.8.7) except for a constant term, and thus it can replace the total Hamiltonian, Eq.
(3.8.1), when only a single radiation mode is involoved.

  

€ 

H =
1
2

hω0σ z + hω a+a +1/2( ) + hg σ +a +σ−a
+( ) . (3.8.8)

where 

€ 

σ + ≡ σ x + iσ y( ) /2, σ− ≡ σ x − iσ y( ) /2  and 

€ 

σ x,σ y,σ z  are the Pauli spin matrices.

We can rescale the origin of energy further and can rewrite Eq. (3.8.7) as

  

€ 

H /h =
0 0
0 −ω0

 

 
 

 

 
 +

0 0
0 ω

 

 
 

 

 
 +

0 g n +1
g n +1 0

 

 
 

 

 
 . (3.8.9)

The secular equation is then

€ 

−ν g n +1
g n +1 δ −ν

= 0, (3.8.10)

where 

€ 

δ ≡ω −ω0 , the laser-atom detuning. The secular equation gives

€ 

ν 2 −δν − g2(n +1) = 0,

ν ± = δ /2 ± δ /2( )2 + g2(n +1) = g n +1 x ± x 2 +1( ), (3.8.11)

where

€ 

x = δ / 2g n +1( ) . (3.8.12)

Let the plus (+) energy state is denoted by

€ 

+,n =α e,n + β g,n +1 . (3.8.13)
Then

€ 

0 = −ν +α + g n +1β = − δ /2 + δ /2( )2 + g2(n +1) 
  

 
  
α + g n +1β.
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(3.8.14)

€ 

α =
g n +1

g2(n +1) + δ /2 + δ /2( )2 + g2(n +1) 
  

 
  

2
=

1

1+ x + x 2 +1( )
2
≡ cosθ,

β =
δ /2 + δ /2( )2 + g2(n +1)

g2(n +1) + δ /2 + δ /2( )2 + g2(n +1) 
  

 
  

2
=

x + x 2 +1

1+ x + x 2 +1( )
2
≡ sinθ.

(3.8.15)
The minus energy state, orthogonal to the plus state, is then given by

€ 

−,n = β e,n −α g,n +1 . (3.8.16)

i) For zero detuning (x=0), 

€ 

α = β =1/ 2. 

€ 

ν ± = ±g n +1.

€ 

±,n ≈
1
2

e,n ± g,n +1( ) . (3.8.17)

ii) For a large positive detuning (x>>1), 

€ 

α ≈ 0, β ≈1. 

€ 

ν ± = ±δ /2.

€ 

+,n ≈ g,n +1 , −,n ≈ e,n . (3.8.18)
iii) For a large negative detuning (-x>>1), 

€ 

α ≈1, β ≈ 0.   

€ 

ν ± = mδ /2.

€ 

+,n ≈ e,n , −,n ≈ − g,n +1 . (3.8.19)

Fig. 5. The coefficients α and β and eigen-energies 

€ 

ν ± in the dressed-state picture are
plotted.

iv) Uncoupled states (g=0), 

€ 

x = ±∞.

€ 

ν + =
δ, δ > 0
0, δ < 0
 
 
 

, ν− =
0, δ > 0
δ, δ < 0
 
 
 

. (3.8.20)

x x
€ 

e,n -like

€ 

e,n -like
€ 

g,n +1 -like

-

€ 

g,n +1 -like
€ 

+,n

€ 

−,n
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More natural eigenvalues are 

€ 

ν g = δ  and  ν e = 0 and corresponding eigen functions are

€ 

e,n   and  g,n +1 . The eigenvalues of the uncoupled states cross at 

€ 

δ = 0  whereas the

coupled states exhibit anti-crossing (separated by 

€ 

2g n +1  at 

€ 

δ = 0) due to the atom-
field coupling.

Jaynes-Cummings Model

The single mode considered above can be a single mode of a cavity with which a two-
level atom is interacting. This situation is of particular interest in the field of cavity
quantum electrodynamics. In this context, the Hamiltonian, Eq. (3.8.8), is called Jaynes-
Cummings Hamiltonian. The energy eigenvalues for zero atom-field (or -cavity)

detuning (δ=0) is given by 

€ 

ν ± = ±g n +1, or

  

€ 

E± = h n +1( )ω0 ± hg n +1  (3.8.21)
with corresponding eigenstates given by

€ 

±,n =
1
2

e,n ± g,n +1( ).

These doublets form the so-called Jaynes-Cumming Ladder structure.

Fig. 6. Jaynes-Cumming Ladder structure.€ 

0,0 = g,0€ 

−,0

€ 

+,1

€ 

+,0
€ 

−,1
€ 

−,2

€ 

+,2

€ 

2g€ 

2 2g
€ 

2 3g
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The time evolution of atom-cavity system can be found by decomposing a given state
into eigenstates 

€ 

+,n , −,n  and by evolving each eigenstate. For example, suppose the
system is initially prepared in 

€ 

e,n .

€ 

Ψ(0) = e,n =
1
2

+,n + −,n( ) (3.8.22)

At time t, the state becomes

  

€ 

Ψ(t) =
1
2

+,n exp − i
h
E+t

 

 
 

 

 
 + −,n exp − i

h
E−t

 

 
 

 

 
 

 

 
 

 

 
 

→
1
2

+,n exp −ig n +1t( ) + −,n exp ig n +1t( )[ ]
=
1
2
e,n + g,n +1( )exp −ig n +1t( ) +

1
2
e,n − g,n +1( )exp ig n +1t( )

= cos g n +1t( ) e,n − isin g n +1t( ) g,n +1 .

(3.8.23)
At the second line, we neglected a common phase factor. This oscillation is called the
enhanced Rabi oscillation. Of particular interest is the case of n=0, which corresponds
to the vacuum Rabi oscillation.


