
Preprint typeset in JHEP style - HYPER VERSION

Lecture note on Clifford algebra

Jeong-Hyuck Park

Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, 91440, France

Electronic correspondence : park@ihes.fr

Abstract: This lecture note surveys the gamma matrices in general dimensions with
arbitrary signatures, the study of which is essential to understand the supersymmetry in
the corresponding spacetime. The contents supplement the lecture presented by the author
at Modave Summer School in Mathematical Physics, Belgium, june, 2005.

Keywords: gamma matrix, supersymmetry, octonion.

mailto:park@ihes.fr�
http://jhep.sissa.it/stdsearch?keywords=gamma_matrix+supersymmetry+octonion�


Contents

1. Preliminary 2

2. Gamma Matrix 2
2.1 In Even Dimensions 2
2.2 In Odd Dimensions 6
2.3 Lorentz Transformations 8
2.4 Crucial Identities for Super Yang-Mills 9

3. Spinors 11
3.1 Weyl Spinor 11
3.2 Majorana Spinor 11
3.3 Majorana-Weyl Spinor 11

4. Majorana Representation and SO(8) 12

5. Superalgebra 16
5.1 Graded Lie Algebra 16
5.2 Left & Right Invariant Derivatives 17
5.3 Superspace & Supermatrices 18

6. Super Yang-Mills 20
6.1 (3 + 1)D N = 1 super Yang-Mills 20
6.2 (5 + 1)D (1, 0) super Yang-Mills 20
6.3 6D super Yang-Mills in the spacetime of arbitrary signature 22
6.4 (9 + 1)D SYM, its reduction, and 4D superconformal symmetry 23

A. Proof of the Theorem 27

B. Gamma matrices in 4,6,10,12 dimensions 29
B.1 Four dimensions 29
B.2 Four to six dimensions 29
B.3 Six dimensions 31
B.4 Ten dimensions again 31
B.5 Twelve dimensions 32

C. Looking for the general odd symmetry 34

– 1 –



1. Preliminary

Where do we see Clifford algebra?

• Dirac equation, for sure.

• Supersymmetry algebra.

• Non-anti-commutative superspace.

• Division algebra, R, C, H,O.

• ADHM construction for instantons, F = ± ∗ F .

The gamma matrices in the Euclidean two-dimensions provide the fermionic oscillators,

f2 = 0 , f̄ 2 = 0 , {f, f̄} = 1 , (1.1)

where f = 1
2(γ1 + iγ2), f̄ = 1

2(γ1 − iγ2). Consequently, the irreducible representation is
given uniquely by 2× 2 matrices acting on two dimensional spinors, |+〉 and |−〉,

f = |−〉〈+| =
(

0 0
1 0

)
, f̄ = |+〉〈−| =

(
0 1
0 0

)
. (1.2)

Higher dimensional gamma matrices are then constructed by the direct products of them.

2. Gamma Matrix

We start with the following Theorem on linear algebra.

Theorem

Any matrix, M , satisfying M2 = λ2 6= 0, λ ∈ C is diagonalizable, and furthermore if there
is another invertible matrix, N , which anti-commutes with M , {N, M} = 0, then M is
2n× 2n matrix of the form

M = S

(
λ 0
0 −λ

)
S−1 . (2.1)

In particular, trM = 0. See Sec.A for our proof.

2.1 In Even Dimensions

In even d = t + s dimensions, with metric1

ηµν = diag(+ + · · ·+︸ ︷︷ ︸
t

−− · · ·−︸ ︷︷ ︸
s

) , (2.2)

1Note that throughout the lecture note we adopt the field theorists’ convention rather than string

theorists such that the time directions have the positive signature. The conversion is straightforward.
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gamma matrices, γµ, satisfy the Clifford algebra

γµγν + γνγµ = 2ηµν . (2.3)

With2

γµ1µ2···µm = γ[µ1γµ2 · · · γµm] , (2.4)

we define ΓM , M = 1, 2, · · · 2d by assigning numbers to independent γµ1µ2···µm , e.g. impos-
ing µ1 < µ2 < · · · < µm,

ΓM = (1, γµ, γµν , · · · , γµ1µ2···µm , · · · , γ12···d) . (2.5)

Then {ΓM}/Z2 forms a group

ΓMΓN = ΩMNΓL , ΩMN = ±1 , (2.6)

where L is a fuction of M,N and ΩMN = ±1 does not depend on the specific choice of
representation of the gamma matrices.
Theorem (2.1) implies

1
2n

tr(ΓMΓN ) = ΩMNδMN , (2.7)

which shows the linear independence of {ΓM} so that any gamma matrix should not be
smaller than 2d/2 × 2d/2.

In two-dimensions, one can take the Pauli sigma matrices, σ1, σ2 as gamma matrices
with a possible factor, i, depending on the signature. In general, one can construct d+2 di-
mensional gamma matrices from d dimensional gamma matrices by taking tensor products
as

(γµ ⊗ σ1, 1⊗ σ2, 1⊗ σ3) : up to a factor i . (2.8)

Thus, the smallest size of irreducible representations is 2d/2× 2d/2 and {ΓM} forms a basis
of 2d/2 × 2d/2 matrices.

By induction on the dimensions, from eq.(2.8), we may require gamma matrices to
satisfy the hermiticity condition

γµ† = γµ =





+γµ for time-like µ

−γµ for space-like µ

. (2.9)

With this choice of gamma matrices we define γ(d+1) as

γ(d+1) =
√

(−1)
t−s
2 γ1γ2 · · · γd , (2.10)

2“[ ]” means the standard anti-symmetrization with “strength one”.
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satisfying
γ(d+1) = (γ(d+1))−1 = γ(d+1)† ,

{γµ, γ(d+1)} = 0 .

(2.11)

For two sets of irreducible gamma matrices, γµ, γ′µ which are 2n × 2n, 2n′ × 2n′

respectively, we consider a matrix

S =
∑

M

Γ′MT (ΓM )−1 , (2.12)

where T , is an arbitrary 2n′ × 2n matrix.
This matrix satisfies for any N from eq.(2.6)

Γ′NS = SΓN . (2.13)

By Schur’s Lemmas, it should be either S = 0 or n = n′,det S 6= 0. Furthermore, S

is unique up to constant, although T is arbitrary. This implies the uniqueness of the
irreducible 2d/2× 2d/2 gamma matrices in even d dimensions, up to the similarity transfor-
mations. These similarity transformations are also unique up to constant. Consequently
there exist similarity transformations which relate γµ to γµ†, γµ∗, γµT since the latter form
also representations of the Clifford algebra. By combining γ(d+1) with the similarity trans-
formations, from eq.(2.11), we may acquire the opposite sign, −γµ†, −γµ∗, −γµT as well.
Explicitly we define3

A =
√

(−1)
t(t−1)

2 γ1γ2 · · · γt , (2.14)

satisfying

A = A−1 = A† , (2.15)

γµ† = (−1)t+1AγµA−1 . (2.16)

If we write
±γµ∗ = B±γµB−1

± , (2.17)

then from
γµ = (γµ∗)∗ = B∗

±B±γµ(B∗
±B±)−1 , (2.18)

one can normalize B± to satisfy [2, 3]

B∗±B± = ε± 1 , ε± = (−1)
1
8
(s−t)(s−t±2) , (2.19)

B†
±B± = 1 , (2.20)

BT± = ε±B± , (2.21)

3Alternatively, one can construct C± explicitly out of the gamma matrices in a certain representation [1].
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where the unitarity follows from

γµ = γ†µ = (±B−1
± γ∗µB±)† = ±B†

±γµ∗(B†
±)−1 = B†

±B±γµ(B†
±B±)−1 , (2.22)

and the positive definiteness of B†
±B±. The calculation of ε± is essentially counting the

dimensions of symmetric and anti-symmetric matrices [2, 3]4.
What is worth to note is the case ε± = +1. As we see later in (4.4), (4.5), if ε+ = +1,

the gamma matrices can be chosen to real, i.e. B+ = 1, while if ε− = +1, the
gamma matrices can be chosen to pure imaginary, i.e. B− = 1. Especially when
the gamma matrices are real we say they are in the Majorana representation.

The charge conjugation matrix,C±, given by

C± = BT
±A , (2.23)

satisfies5 from the properties of A and B±

C±γµC−1
± = ζγµT , ζ = ±(−1)t+1 , (2.24)

C†
±C± = 1 , (2.25)

CT
± = (−1)

1
8
d(d−ζ2) C± = ε±(±1)t(−1)

1
2
t(t−1) C± , (2.26)

ζt(−1)
1
2
t(t−1)AT = B±AB−1

± = C±AC−1
± . (2.27)

ε± is related to ζ as
ε± = ζt(−1)

1
2
t(t−1)+ 1

8
d(d−ζ2) . (2.28)

Eqs.(2.24, 2.26) imply

(C±γµ1µ2···µn)T = ζn(−1)
1
8
d(d−ζ2)+ 1

2
n(n−1) C±γµ1µ2···µn

= ε±(±1)t+n(−1)n+ 1
2
(t+n)(t+n−1) C±γµ1µ2···µn .

(2.29)

γ(d+1) satisfies
γ(d+1)† = (−1)tA±γ(d+1)A−1

± = γ(d+1) ,

γ(d+1)∗ = (−1)
t−s
2 B±γ(d+1)B−1

± ,

γ(d+1)T = (−1)
t+s
2 C±γ(d+1)C−1

± ,

(2.30)

4From (2.24) we have (C±γµ1µ2···µn)T = χn± C±γµ1µ2···µn , χn± := ε±(±1)t+n(−1)n+ 1
2 (t+n)(t+n−1)

(2.29). Thus, one can obtain the dimension of the symmetric 2d/2 × 2d/2 matrices as

2d/2−1
�
2d/2 + 1

�
=

dX
n=0

1
2

(1 + χn±)
d!

n!(d− n)!
.

From this one can obtain the value of ε± (2.19).
5Essentially all the properties of the charge conjugation matrix, C± depends only on d and ζ. However

it is useful here to have expression in terms of the signature to dicuss the Majorana supersymmetry later.
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where {A+, A−} = {A, γ(d+1)A}.

In stead of eq.(2.8) one can construct d + 2 dimensional gamma matrices from d di-
mensional gamma matrices by taking tensor products as

(γµ ⊗ σ1, γ(d+1) ⊗ σ1, 1⊗ σ2) : up to a factor i . (2.31)

Therefore the gamma matrices in even dimensions can be chosen to have the “off-block
diagonal” form

γµ =

(
0 σµ

σ̃µ 0

)
, γ(d+1) =

(
1 0
0 −1

)
, (2.32)

where the 2
d
2
−1 × 2

d
2
−1 matrices, σµ, σ̃µ satisfy

σµσ̃ν + σν σ̃µ = 2ηµν , (2.33)

σµ† = σ̃µ . (2.34)

In this choice of gamma matrices, from eq.(2.30), A±, B±, C± are either “block diagonal”
or “off-block diagonal” depending on whether t, t−s

2 , t+s
2 are even or odd respectively.

In particular, in the case of odd t, we write from eqs.(2.14, 2.15) A as

A =

(
0 a
ã 0

)
, a =

√
(−1)

t(t−1)
2 σ1σ̃2 · · ·σt = ã† = ã−1 , (2.35)

and in the case of odd t+s
2 we write from eq.(2.26) C± as

C± =

(
0 c
±c̃ 0

)
, c = ε+(−1)

t(t−1)
2 c̃T = (c†)−1 , (2.36)

where a, ã, c, c̃ satisfy from eqs.(2.16, 2.24)

σµ† = ãσµã , σ̃µ† = aσ̃µa ,

σµT = (−1)t+1c̃σµc−1 , σ̃µT = (−1)t+1cσ̃µc̃−1 .

(2.37)

If both of t and t+s
2 are odd then from eq.(2.27)

aT = (−1)
t−1
2 c̃ a c−1 , ãT = (−1)

t−1
2 c ã c̃−1 . (2.38)

2.2 In Odd Dimensions

The gamma matrices in odd d + 1 = t + s dimensions are constructed by combining a set
of even d dimensional gamma matrices with either ±γ(d+1) or ±iγ(d+1) depending on the
signature of even d dimensions. This way of construction is general, since γ(d+1) serves the
role of γd+1

−γµ = γd+1γµ(γd+1)−1 , for µ = 1, 2, · · · , d ,

(γd+1)2 = ±1 ,

(2.39)

– 6 –



and such a matrix is unique in irreducible representations up to sign.

However, contrary to the even dimensional Clifford algebra, in odd dimensions two
different choices of the signs in γd+1 bring two irreducible representations for the Clifford
algebra, which can not be mapped to each other6 by similarity transformations

γµ = (γ1, γ2, · · · , γd+1) and γ′µ = (γ1, γ2, · · · , γd,−γd+1) . (2.40)

If there were a similarity transformation between these two, it should have been identity up
to constant because of the uniqueness of the similarity transformation in even dimensions.
Clearly this would be a contradiction due to the presence of the two opposite signs in γd+1.

In general one can put7

γd+1 =





±γ12···d for t− s ≡ 1 mod 4 ,

±iγ12···d for t− s ≡ 3 mod 4 .

(2.41)

2d/2×2d/2 gamma matrices in odd d+1 dimensions, γµ, µ = 1, 2, · · · , d+1, induce the
following basis of 2d/2 × 2d/2 matrices, Γ̃M

Γ̃M = (1, γµ, γµν , · · · , γµ1µ2···µd/2) , M = 1, 2, · · · 2d . (2.42)

From eq.(2.41)
Γ̃M Γ̃N = Ω̃MN Γ̃L ,

Ω̃MN =





±1 for t− s ≡ 1 mod 4 ,

±1,±i For t− s ≡ 3 mod 4 .

(2.43)

Here, contrary to the even dimensional case, Ω̃MN depends on each particular choice of
the representations due to the arbitrary sign factor in γd+1. This is why eq.(2.13) does not
hold in odd dimensions. Therefore it is not peculiar that not all of ±γµ†,±γµ∗,±γµT are
related to γµ by similarity transformations. In fact, if it were true, say for ±γµ∗, then the
similarity transformation should have been B± (2.17) by the uniqueness of the similarity
transformations in even dimensions, but this would be a contradiction to eq.(2.30), where
the sign does not alternate under the change of B+ ↔ B−. Thus, in odd dimensions, only
the half of ±γµ†,±γµ∗,±γµT are related to γµ by similarity transformations and hence

6Nevertheless, this can be cured by the following transformation. Under xµ =

(x1, x2, · · · , xd+1) → x′µ = (x1, x2, · · · ,−xd+1), we transform the Dirac field ψ(x) as

ψ(x) → ψ′(x′) = ψ(x) , to get ψ̄(x)γ · ∂ψ(x) → ψ̄′(x′)γ′ · ∂′ψ′(x′) = ψ̄(x)γ · ∂ψ(x) . Hence

those two representations are equivalent describing the same physical system.
7Our results (2.41-2.50) do not depend on the choice of the signature in d dimensions, i.e. they hold for

either increasing the time dimensions, d = (t− 1) + s or the space dimensions, d = t + (s− 1).
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from eq.(2.30) there exist three similarity transformations, A,B, C such that

(−1)t+1γµ† = AγµA−1 , (2.44)

(−1)
t−s−1

2 γµ∗ = BγµB−1 , (2.45)

(−1)
t+s−1

2 γµT = CγµC−1 . (2.46)

A, B, C are all unitary and satisfy

A = A−1 = A† , C = BT A , (2.47)

B∗B = ε 1 = (−1)
1
8
(t−s+1)(t−s−1) 1 , (2.48)

BT = εB , CT = ε(−1)
ts
2 C = (−1)

1
8
(t+s+1)(t+s−1)C , (2.49)

(−1)
ts
2 AT = BAB−1 = CAC−1 . (2.50)

In particular, A is given by eq.(2.14).

2.3 Lorentz Transformations

Lorentz transformations, L can be represented by the following action on gamma matrices
in a standard way

L−1γµL = Lµ
νγ

ν , (2.51)

where L and L are given by

L = ewµνMµν
, L = e

1
2
wµνγµν

,

(Mµν)λ
ρ = ηµλδν

ρ − ηνλδµ
ρ .

(2.52)

For even d, if a 2d/2×2d/2 matrix, Mµ1µ2···µn , is totally anti-symmetric over the n spacetime
indices

Mµ1µ2···µn = M [µ1µ2···µn] , (2.53)

and transforms covariantly under Lorentz transformations in d or d + 1 dimensions as

L−1Mµ1µ2···µnL =
n∏

i=1

Lµi
νi Mν1ν2···νn , (2.54)

then for 0 ≤ n ≤ max(d/2, 2), the general forms of Mµ1µ2···µn are

Mµ1µ2···µn =





(1 + cγ(d+1))γµ1µ2···µn In even d dimensions ,

γµ1µ2···µn In odd d + 1 dimensions ,
(2.55)
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where c is a constant.

To show this, one may first expand Mµ1µ2···µn in terms of γν1ν2···νm , γ(d+1)γν1ν2···νm or
γν1ν2···νm depending on the dimensions, d or d+1, with 0 ≤ m ≤ d/2. Then eq.(2.54) implies
that the coefficients of them, say Tµ1µ2···µm+n , are Lorentz invariant tensors satisfying

m+n∏

i=1

Lµi
νi

T ν1ν2···νm+n = Tµ1µ2···µm+n (2.56)

Finally one can recall the well known fact [4] that the general forms of Lorentz invariant
tensors are multi-products of the metric, ηµν , and the totally antisymmetric tensor, εµ1µ2···,
which verifies eq.(2.55).

2.4 Crucial Identities for Super Yang-Mills

The following identities are crucial to show the existence of the non-Abelian super Yang-
Mills in THREE, FOUR, SIX and TEN dimensions.

(i) The following identity holds only in THREE or FOUR dimensions with arbitrary sig-
nature

0 = (γµC−1)αβ(γµC−1)γδ + cyclic permutations of α, β, γ (2.57)

To verify the identity in even dimensions we contract (γµC−1)αβ(γµ)γδ with (Cγν1ν2···νn)βα

and take cyclic permutations of α, β, γ to get

0 = 2d/2δn
1 + (d− 2n)(ζ + ζn(−1)

1
2
n(n−1))(−1)n+ 1

8
d(d−ζ2) (2.58)

This equation must be satisfied for all 0 ≤ n ≤ d, which is valid only in d = 4, ζ = −1.
Similar analysis can be done for the d+1 odd dimensions by adding (γ(d+1)C−1)αβ(γ(d+1)C−1)γδ

term into eq.(2.57). We get

0 = 2d/2(δn
1 + δn

d ) + (d− 2n + 1)(ζ + ζn(−1)
1
2
n(n−1))(−1)n+ 1

8
d(d−ζ2), ζ = (−1)d/2

(2.59)
Only in d = 2 and hence three dimensions, this equation is satisfied for all 0 ≤ n ≤ d.

(ii) The following identity holds only in TWO, FOUR or SIX dimensions with arbitrary
signature

0 = (σµ)αβ(σµ)γδ + (σµ)γβ(σµ)αδ (2.60)

To verify this identity we take d dimensional sigma matrices from f = d − 2 dimensional
gamma matrices as in eq.(2.31)

σµ = (γµ, γ(f+1), i) (2.61)

to get
(σµ)αβ(σµ)γδ = (γµ)αβ(γµ)γδ + (γ(f+1))αβ(γ(f+1))γδ − δαβδγδ (2.62)
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Again this expression is valid for any signature, (t, s). Now we contract this equation with
(γν1ν2···νnC−1

+ )βδ. From eqs.(2.24, 2.30) in the case of odd t we get
(
(−1)n(f − 2n) + (−1)

f
2
+n − 1

)
(γν1ν2···νnC−1

+ )αγ (2.63)

To satisfy eq.(2.60) this expression must be anti-symmetric over α ↔ γ for any 0 ≤ n ≤ f .
Thus from eq.(2.29) we must require 0 = (−1)n(f − 2n) + (−1)

f
2
+n − 1 for all n satis-

fying (−1)
1
8
f(f−2)+ 1

2
n(n−1) = 1. This condition is satisfied only in f = 0, 2, 4 and hence

d = 2, 4, 6 (f = 6 case is excluded by choosing n = 6 and f ≥ 8 cases are excluded by
choosing either n = 0 or n = 3).

(iii) The following identity holds only in TWO or TEN dimensions with arbitrary signature

0 = (σµc−1)αβ(σµc−1)γδ + cyclic permutations of α, β, γ (2.64)
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3. Spinors

3.1 Weyl Spinor

In any even d dimensions, Weyl spinor, ψ, satisfies

γ(d+1)ψ = ψ (3.1)

and so ψ̄ = ψ†A satisfies from eq.(2.30)

ψ̄γ(d+1) = (−1)tψ̄ γ(d+1)C−1
± ψ̄T = (−1)

t−s
2 C−1

± ψ̄T (3.2)

3.2 Majorana Spinor

By definition Majorana spinor satisfies

ψ̄ = ψT C± or ψ̄ = ψT C (3.3)

depending on the dimensions, even or odd. This is possible only if ε±, ε = 1 and so from
eqs.(2.19, 2.48)

η = +1 : t− s = 0, 1, 2 mod 8

η = −1 : t− s = 0, 6, 7 mod 8
(3.4)

where η is the sign factor, ±1, occuring in eq.(2.17) or eq.(2.45)8.

3.3 Majorana-Weyl Spinor

Majorana-Weyl spinor satisfies both of the two conditions above

γ(d+1)ψ = ψ ψ̄ = ψT C± (3.5)

Majorana-Weyl Spinor exists only if

η = +1 : t− s = 0 mod 8

η = −1 : t− s = 0 mod 8
(3.6)

8In [2], η = −1 case is called Majorana and η = +1 case is called pseudo-Majorana.
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4. Majorana Representation and SO(8)

Fact 1:
Consider a finite dimensional vector space, V with the unitary and symmetric matrix,
B = BT , BB† = 1. For every |v〉 ∈ V if B|v〉∗ ∈ V then there exists an orthonormal “semi-
real ” basis, V = {|l〉, l = 1, 2, · · ·} such that B|l〉∗ = |l〉.

Proof
Start with an arbitrary orthonormal bais, {|vl〉, l = 1, 2, · · ·} and let |1〉 ∝ |v1〉+B|v1〉∗. Af-
ter the normalization, 〈1|1〉 = 1, we can take a new orthonormal basis, {|1〉, |2′〉, |3′〉, · · ·}.
Now we assume that {|1〉, |2〉, · · · |k − 1〉, |k′〉, |(k + 1)′〉, · · ·} is an orhonormal basis such
that B|j〉∗ = |j〉 for 1 ≤ j ≤ k − 1. To construct the k th such a vector, |k〉 we set
|k〉 ∝ |k′〉+B|k′〉∗ with the normalization. We check this is orthogonal to |j〉, 1 ≤ j ≤ k−1

〈j|( |k′〉+ B|k′〉∗ )
= 0 + 〈k|j〉 = 0 . (4.1)

In this way one can construct the desired basis.

In the spacetime which admits Majorana spinor from Eq.(3.4)

η = +1 : t− s = 0, 1, 2 mod 8

η = −1 : t− s = 0, 6, 7 mod 8 ,

(4.2)

more explicitly in the even dimensions having ε+ = 1 (or ε− = 1) where B+ (or B−) is
symmetric and also in the odd dimensions of ε = 1 where B is symmetric, from the fact 1
above we can choose an “semi-real ” orthonormal basis such that Bη|l〉∗ = |l〉 In the basis,
we write the gamma matrices

γµ =
∑

Rµ
lm|l〉〈m| . (4.3)

From η γµ∗ = Bηγ
µB−1

η and the property of the semi-real basis, Bη|l〉∗ = |l〉 we get

(Rµ
lm)∗ = ηRµ

lm . (4.4)

Since Rµ is also a representation of the gamma matrix

RµRν + RνRµ = 2ηµν , (4.5)

adopting the true real basis, we conclude that there exists a Majorana represention
where the gamma matrices are real, η = + or pure imaginary, η = − in any
spacetime admitting Majorana spinors.

Furthermore from Eq.(2.30), in the even dimension of t − s ≡ 0 mod 8, ε± = 1 and
γ(d+1)∗ = Bγ(d+1)B−1 (here we omit the subscript index ± or η for simplicity.). The
action, |v〉 → B†|v〉∗ preserves the chirality, and from the fact 1 above we can choose
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an orthonormal semi-real basis for the chiral and anti-chiral spinor spaces, V = V+ + V−,
V± = {|l±〉} such that

〈l±|m±〉 = δlm , 〈l±|m∓〉 = 0 , γ(d+1)|l±〉 = ±|l±〉 , B†|l±〉∗ = |l±〉 . (4.6)

With the semi-real basis

γ(d+1) =

(
1 0
0 −1

)
, (4.7)

and the gamma matrices are in the Majorana representation

γµ =

(
0 rµ

rT
µ 0

)
, rµ ∈ O(2d/2−1) , rµrνT + rνrµT = 2δµν . (4.8)

From Eq.(6.8) any two sets of semi-real basis, say {|l±〉} and {|l̃±〉} are connected by
an O((2d/2−1)) transformation

|l̃±〉 =
∑
m

Λ±ml|m±〉 ,
∑
m

Λ±lmΛ±nm = δln . (4.9)

If we define
Λ± =

∑

l,m

Λ±lm|l±〉〈m±| , (4.10)

then |l̃±〉 = Λ±|l±〉 and from the definition of the semi-real basis

Λ± = B†Λ∗±B = Λ±P± = P±Λ± , Λ±Λ†± = P± . (4.11)

We write

Λ± = eM± , M± ≡
∞∑

n=1

(−1)n+1 1
n

(Λ± − P±)n = ln Λ± . (4.12)

Thus for Λ± such that the infinity sum converges we have

M± = −M †
± = B†M ∗

±B = M±P± = P±M± . (4.13)

This gives a strong constraint when we express M± by the gamma matrix products. For
the Eucledean eight dimensions only the SO(8) generators for the spinors survive in the
expansion!

M± = 1
2wabγ

abP± . (4.14)

Namely we find an isomorphism between the two SO(8)’s, one for the semi-real vectors and
the other for the spinors in the conventional sense. Alternatively this can be seen from

γab =

(
r[arb] T 0

0 r[a T rb]

)
, (4.15)

where the each block diagonal is a generator of SO(D) while the dimension of the chiral
space is 2d/2−1. Only in d = 8 both coincide leading to the “so(8) triolity” among sov(8),
soc(8) and soc̄(8).
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Fact 2: Relation to octonions.
In Euclidean eight dimensions, the 16× 16 gamma matrices can be taken of the off-block
diagonal form,

γa =

(
0 ra

rT
a 0

)
, rar

T
b + rbr

T
a = 2δab , (4.16)

where the 8× 8 real matrices, ra, 1 ≤ a ≤ 8, give the multiplication of the octonions, oa,

oaob = (ra)b
coc . (4.17)

Fact 3:
Consider an arbitrary real self-dual or anti-self-dual four form in D = 8

T±abcd = ± 1
4! εabcdefghT±efgh . (4.18)

Using the SO(8) rotations one can transform the four form into the canonical form where
the non-vanishing components are T±1234, T±1256, T±1278, T±1357, T±1368, T±1458, T±1467 and their
dual counter parts only.

Proof
We start with the seven linearly independent traceless Hermitian matrices

E±1 = γ2341P± , E±2 = γ2561P± , E±3 = γ2781P± , E±4 = γ1357P± ,

E±5 = γ3681P± , E±6 = γ4581P± , E±7 = γ4671P± .

(4.19)

As they commute with each other, there exists a basis V± = {|l±〉} diagonalizing the seven
quantities

E±r =
∑

l

λrl|l±〉〈l±| , (λrl)2 = 1 . (4.20)

Further, since C|l±〉∗ is also an eigenvector of the same eigenvalues, from the fact 1 we
can impose the semi-reality condition without loss of generality, C|l±〉∗ = |l±〉.

Now for the self-dual four form we let

T± = 1
4 T±abcdγ

abcd . (4.21)

Since T± is Hermitian and C(T±)∗C† = T±, one can diagonalize T± with a semi-real basis

T± =
∑

l

λl|l̃±〉〈l̃±| , C|l̃±〉∗ = |l̃±〉 . (4.22)

For the two semi-real basis above we define a transformation matrix

O± = |l±〉〈l̃±| . (4.23)
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Then, since T± is traceless, O±T±O †
± can be written in terms of E±i’s. Finally the fact

O± gives a spinorial SO(8) rotation completes our proof.

Some useful formulae are

±P± = E±1E±2E±3 = E±1E±4E±5 = E±1E±6E±7 = E±2E±4E±6

= E±2E±5E±7 = E±3E±4E±7 = E±3E±5E±6 .

(4.24)

For an arbitrary self-dual or anti-self-dual four form tensor in D = 8, from

T±acdeT
±bcde = ( 1

4!)
2εacdefghiε

bcdejklmT±fghiT±jklm

= 1
4 δa

bT±cdefT±cdef − T±acdeT
±bcde ,

(4.25)

we obtain an identity
T±acdeT

±bcde = 1
8 δa

b T±cdefT±cdef . (4.26)
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5. Superalgebra

5.1 Graded Lie Algebra

Supersymmetry algebra is a Ẑ2 graded Lie algebra, g = {Ta}, which is an algebra with
commutation and anti-commutation relations [5, 6]

[Ta, Tb} = Cc
abTc (5.1)

where Cc
ab is the structure constant and

[Ta, Tb} = TaTb − (−1)#a#bTbTa (5.2)

with #a, the Ẑ2 grading of Ta,

#a =

{
0 for bosonic a

1 for fermionic a
(5.3)

The generalized Jacobi identity is

[Ta, [Tb, Tc}} − (−1)#a#b[Tb, [Ta, Tc}} = [[Ta, Tb}, Tc} (5.4)

which implies

(−1)#a#cCd
abC

e
dc + (−1)#b#aCd

bcC
e
da + (−1)#c#bCd

caC
e
db = 0 (5.5)

For a graded Lie algebra we consider

g(z) = exp(zaTa) (5.6)

where za is a superspace coordinate component which has the same bosonic or fermionic
property as Ta and hence zaTa is bosonic.
In the general case of non-commuting objects, say A and B, the Baker-Campbell-Haussdorff
formula gives

eAeB = exp

( ∞∑

n=0

Cn(A,B)

)
(5.7)

where Cn(A,B) involves n commutators. The first three of these are

C0(A,B) = A + B

C1(A,B) = 1
2 [A, B]

C2(A,B) = 1
12 [[A,B], B] + 1

12 [A, [A,B]]

(5.8)

Since for the graded algebra

[zaTa, z
bTb] = zbza[Ta, Tb} = zbzaCc

abTc (5.9)
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the Baker-Campbell-Haussdorff formula (5.7) implies that g(z) forms a group, the graded
Lie group. Hence we may define a function on superspace, fa(w, z), by

g(w)g(z) = g(f(w, z)) (5.10)

Since g(0) = e, the identity, we have f(0, z) = z, f(w, 0) = w and further we assume that
f(w, z) has a Taylor expansion in the neighbourhood of w = z = 0.
Associativity of the group multiplication requires f(w, z) to satisfy

f(f(u,w), z) = f(u, f(w, z)) (5.11)

5.2 Left & Right Invariant Derivatives

For a graded Lie group, left and right invariant derivatives, La, Ra are defined by

Lag(z) = g(z)Ta (5.12)

Rag(z) = −Tag(z) (5.13)

Explicitly we have

La = La
b(z)∂b La

b(z) =
∂f b(z, u)

∂ua

∣∣∣∣
u=0

(5.14)

Ra = Ra
b(z)∂b Ra

b(z) = − ∂f b(u, z)
∂ua

∣∣∣∣
u=0

(5.15)

where ∂b = ∂
∂zb .

It is easy to see that La is invariant under left action, g(z) → hg(z), and Ra is invariant
under right action, g(z) → g(z)h.
From eqs.(5.12, 5.13) we get

[La, Lb} = Cc
abLc (5.16)

[Ra, Rb} = Cc
abRc (5.17)

and from eqs.(5.12, 5.13) we can also easily show

[La, Rb} = 0 (5.18)

Thus, La(z), Ra(z) form representations of the graded Lie algebra separately. For the
supersymmetry algebra, the left invariant derivatives become covariant derivatives, while
the right invariant derivatives become the generators of the supersymmetry algebra acting
on superfields.
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5.3 Superspace & Supermatrices

In general a superspace may be denoted by Rp|q, where p, q are the number of real com-
muting (bosonic) and anti-commuting (fermionic) variables respectively. A supermatrix
which takes Rp|q → Rp|q may be represented by a (p + q)× (p + q) matrix, M , of the form

M =

(
a b

c d

)
(5.19)

where a, d are p× p, q × q matrices of Grassmanian even or bosonic variables and b, c are
p× q, q × p matrices of Grassmanian odd or fermionic variables respectively.
The inverse of M can be expressed as

M−1 =

(
(a− bd−1c)−1 −a−1b(d− ca−1b)−1

−d−1c(a− bd−1c)−1 (d− ca−1b)−1

)
(5.20)

where we may write

(a− bd−1c)−1 = a−1 +
∞∑

n=1

(a−1bd−1c)na−1 (5.21)

Note that due to the fermionic property of b, c, the power series terminates at n ≤ pq + 1.
The supertrace and the superdeterminant of M are defined as

strM = tr a− tr d (5.22)

sdetM = det(a− bd−1c)/det d = det a/det(d− ca−1b) (5.23)

The last equality comes from

det(1− a−1bd−1c) = det−1(1− d−1ca−1b) (5.24)

which may be shown using

det(1− a) = exp

(
−

∞∑

n=1

1
n

tr an

)
(5.25)

and observing
tr (a−1bd−1c)n = −tr (d−1ca−1b)n (5.26)

From eq.(5.23) we note that sdetM 6= 0 implies the existence of M−1. Thus the set of
supermatrices for sdetM 6= 0 forms the supergroup, Gl(p|q). If sdetM = 1 then
M ∈ Sl(p|q).
The supertrace and the superdeterminant have the properties

str (M1M2) = str (M2M1) (5.27)

sdet (M1M2) = sdetM1 sdetM2 (5.28)
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We may define the transpose of the supermatrix, M , either as

M t =

(
at ct

−bt dt

)
(5.29)

or as

M t′ =

(
at −ct

bt dt

)
(5.30)

where at, bt, ct, dt are the ordinary transposes of a, b, c, d respectively.
We note that

(M1M2)t = M t
2M

t
1 (M1M2)t′ = M t′

2 M t′
1 (5.31)

(M t)t′ = (M t′)t = M (5.32)
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6. Super Yang-Mills

6.1 (3 + 1)D N = 1 super Yang-Mills

In four-dimensional Minkowskian spacetime of the metric, η = diag(− + ++), the 4 × 4
gamma matrices satisfy with µ = 0, 1, 2, 3,

Γµ† = Γµ = −AΓµA† , A = Γt = −A† ,

Γµ∗ = +BΓµB† , BT = B , B† = B−1 ,

ΓµT = −CΓµC† , C = −CT = BΓt , C† = C−1 .

(6.1)

The Majorana spinor, ψ satisfies then

ψ̄ = ψ†Γt = ψT C ⇐⇒ ψ∗ = Bψ . (6.2)

The four-dimensional super Yang-Mills Lagrangian reads

L4D = tr
(−1

4FµνF
µν − i1

2 ψ̄ΓµDµψ
)

. (6.3)

The supersymmetry transformations are

δAµ = iε̄Γµψ = −iψ̄Γµε , δψ = −1
2FµνΓµνε . (6.4)

6.2 (5 + 1)D (1, 0) super Yang-Mills

In six-dimensional Minkowskian spacetime of the metric, η = diag(−+ + + ++), the 8× 8
gamma matrices satisfy with M = 0, 1, 2, 3, 4, 5,

ΓM † = ΓM = AΓMA† , A := Γ12345 = A† = A−1 ,

ΓM T = CΓMC† , CT = −C , C† = C−1 ,

ΓM ∗ = BΓMB† , B = CA = −BT , B† = B−1 .

(6.5)

The gamma “seven” is given by Γ(7) = Γ012345 to satisfy Γ(7) = Γ(7)† = Γ(7)−1 and

ΓLMN = 1
6εLMNPQR ΓPQRΓ(7) , (6.6)

where ε012345 = +1.

The su(2) Majorana-Weyl spinor, ψi, i = 1, 2, satisfies then

Γ(7)ψi = +ψi , ψ̄iΓ(7) = −ψ̄i : chiral ,

ψ̄i = (ψi)†A = εij(ψj)T C : su(2) Majorana ,

(6.7)
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where εij is the usual 2 × 2 skew-symmetric unimodular matrix. It is worth to note that
ψ̄iΓM1M2···M2nρi = 0 and

tr(iψ̄iΓM1M2···M2n+1ρi) =
[
tr(iψ̄iΓM1M2···M2n+1ρi)

]†
= −(−1)ntr(iρ̄iΓM1M2···M2n+1ψi) ,

(6.8)
where ψi, ρi are two arbitrary Lie algebra valued su(2) Majorana-Weyl spinors.

The six-dimensional super Yang-Mills Lagrangian reads

L6D = tr
(−1

4FLMFLM − i1
2 ψ̄iΓLDLψi

)
, (6.9)

where all the fields are in the adjoint representation of the gauge group such that, with the
Hermitian Lie algebra valued gauge field, AM ,

DLψi = ∂Lψi − i[AL, ψi] , FLM = ∂LAM − ∂MAL − i[AL, AM ] . (6.10)

From (6.8) the action is real valued.

The supersymmetry transformations are given by with a su(2) Majorana-Weyl super-
symmetry parameter, εi,

δAM = +iε̄iΓMψi = −iψ̄iΓMεi , δψi = −1
2FMNΓMNεi , (6.11)

so that, in particular, δψ̄i = +1
2FMN ε̄iΓMN . The crucial Fierz identity for the supersym-

metry invariance is with the chiral projection matrix, P := 1
2(1 + Γ(7)),

(
ΓLP

)
αβ

(ΓLP )γδ +
(
ΓLP

)
γβ

(ΓLP )αδ = 0 , (6.12)

which ensures the vanishing of the terms cubic in ψi,

tr
(
ψ̄iΓL[δAL, ψi]

)
= tr

(
ψ̄iΓL[ iε̄jΓLψj , ψi]

)
= 0 . (6.13)

The equations of motion are

DLFLM + ψ̄iΓMψi = 0 , ΓMDMψi = 0 . (6.14)
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6.3 6D super Yang-Mills in the spacetime of arbitrary signature

With (
ΓM

)T = ±C±ΓMC−1
± , CT± = ∓C± , (6.15)

we have (C±ΓM
)T

= −C±ΓM . (6.16)

We introduce a pair of Weyl spinors of the same chirality,

(ψ1, ψ2) , Γ(7)ψi = sψi , s2 = 1 , (6.17)

and define the charge conjugate spinor by

ψ̄i
c := ε−1ijψT

j C± . (6.18)

The super Yang-Mills Lagrangian reads

L6D = tr
(

1
4FMNFMN + 1

2 ψ̄i
cΓ

MDMψi

)
, (6.19)

and the supersymmetry transformations are given by

δAM = ε̄i
cΓMψi = −ψ̄i

cΓMεi ,

δψi = −1
2FMNΓMNεi ,

(6.20)

so that, in particular, δψ̄i
c = +1

2FMN ε̄i
cΓ

MN . The Lagrangian transforms as, from (2.60),

δL6D = ∂M tr
(
FMNδAN − 1

2 ψ̄i
cΓ

Mδψi

)
. (6.21)

Only if B∗±B± = −1, as in the Minkowskian signature, one can impose the pseudo-
Majorana condition,

ψ̄i
c = ψ̄i

D := (ψi)†A . (6.22)
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6.4 (9 + 1)D SYM, its reduction, and 4D superconformal symmetry

• Conventions for (9 + 1)D gamma matrices
Spacetime signature : η = diag(−+ + · · ·+), mostly plus signature.
32× 32 Gamma matrices:
i) Hermitian conjugate,

(ΓM )† = ΓM = −Γ0ΓMΓ0 = AΓMA† ,

A = Γ12···9 = A† = A−1 ,

(AΓM1M2···Mn)† = (−1)
1
2
n(n−1)AΓM1M2···Mn ,

(6.23)

ii) Complex conjugate,
(ΓM )∗ = ±B±ΓMB†± ,

B± = BT± = (B†±)−1 ,

(6.24)

iii) Transpose,

(ΓM )T = ±C±ΓMC†± ,

C± = BT±A = ±C T± = (C†±)−1 ,

(C+ΓM1M2···Mn)T = (−1)
1
2
n(n−1)C+ΓM1M2···Mn .

(6.25)

Let the spinorial indices be located as

(ΓM )α
β , (A)α

β , (B±)αβ = (B±)βα , (C±)αβ = ±(C±)βα . (6.26)

Define
Γ(10) = Γ012···9 = (Γ(10))† = (Γ(10))−1 = −C†+(Γ(10))TC+ . (6.27)

The crucial identity for the super Yang-Mills action is

(C+ΓMΓ±)(αβ(C+ΓMΓ±)γ)δ = 0 (6.28)

where Γ± = 1
2(1 ± Γ(10)) is either the chiral or the anti-chiral projector, and α, β, γ

are symmetrized. Note also the symmetric property, (C+ΓMΓ±)T = C+ΓMΓ±.

For spinors we set
ψ̄ = ψ†A . (6.29)

Majorana-Weyl Spinor, ψ, satisfies

Γ(10)ψ = +ψ : Weyl condition , (6.30)

ψ∗ = B+ψ : Majorana condition , (6.31)
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or equivalently,
ψ̄Γ(10) = −ψ̄ : opposite chirality ,

ψ̄ = ψTC+ .

(6.32)

Hence for the fermionic Majorana-Weyl spinors,

ψ̄1ΓM1M2···M2nψ2 = 0 , (6.33)

and9

ψ̄1ΓM1M2···M2n+1ψ2 = (−1)n+1ψ̄2ΓM1M2···M2n+1ψ1 = −(ψ̄1ΓM1M2···M2n+1ψ2)† : imaginary .

(6.34)

We can further set

ΓM =

(
0 γ̃M

γM 0

)
, γM γ̃N + γN γ̃M = 2ηMN , η = diag(−+ + + · · ·+) .

(6.35)
Namely, (γM , γ̃N ) are the real 16 × 16 matrices appearing in the off block-diagonal
parts of the 32× 32 gamma matrices,

satisfying10

(γM )∗ = γM , (γM )T = γ̃0γM γ̃0 = γ̃M ,

γ̃0γ1γ̃2 · · · γ9 = +1 , γ0γ̃1γ2 · · · γ̃9 = −1 .

(6.36)

• Lagrangian.
Let the gauge group be su(N) or u(N).
Lie algebra valued fields,

AM = Ap
MTp , Ψ = ΨpTp , (Tp)† = Tp . (6.37)

Field strength and the covariant derivative are

FMN = ∂MAN − ∂NAM − i[AM , AN ] , DMΨ = ∂MΨ− i[AM ,Ψ] . (6.38)

Bianchi identity reads

DLFMN + DMFNL + DNFLM = 0 . (6.39)

The gauge symmetry is given by, for g† = g−1,

AM → gAMg−1 + ig∂Mg−1 , FMN → gFMNg−1 , Ψ → gΨg−1 . (6.40)

9When the spinor is Lie algebra valued, Eq.(6.34) does not hold in general.
10From γ̃M = (γM )−1 it also follows that γ̃MγN +γ̃NγM = 2ηMN . One may further impose the symmetric

property, (γM )T = γM , but it is not necessary in our paper.
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The Lagrangian of 10D super Yang-Mills theory reads

L = tr
[−1

4FMNFMN − i1
2Ψ̄ΓMDMΨ

]

= tr
[−1

4FMNFMN − i1
2 ψ̄γMDMψ

]
,

(6.41)

where Ψ ≡ (ψ 0)T and ψα is a sixteen component spinor and ψ̄ := ψT γ̃0.

Under arbitrary infinitesimal transformations, δAM , δΨ,

δL = tr
[(

DLFLM + Ψ̄ΓMΨ
)
δAM − iΨ̄ΓMDMδΨ

]
+∂N tr

[
FMNδAM − i1

2δΨ̄ΓNΨ
]

.

(6.42)

• Summary of supersymmetry in D ≤ 10.
The ordinary supersymmetry and kinetic supersymmetry are given by

δAM = iΨ̄ΓMξ+ = −iξ̄+ΓMΨ , δΨ = 1
2FMNΓMNξ+ + ξ′+1N×N , (6.43)

so that
δΨ̄ = −1

2 ξ̄+FMNΓMN + ξ̄′+1N×N , (6.44)

where ξ+ and ξ′+ are constant Majornana-Weyl spinors corresponding to the ordinary
and kinetic supersymmetry parameters. + denotes the chirality. The above is the
symmetry of the (9+1)D and also any dimensionally reduced super Yang-Mills action.

In four-dimensions of either Minkowskian or Euclidean signature, the supersymmetry
gets enhanced to the superconformal symmetry as

δAM = iΨ̄ΓME(x) = −iĒ(x)ΓMΨ , δΨ = 1
2FMNΓMNE(x)− 2ΦaΓaξ− + ξ′+1N×N ,

(6.45)
where m is for the four-dimensions and a is for the rest. ξ− is a constant Majornana-
Weyl spinor of the opposite chirality corresponding to the special superconformal
symmetry parameter, and

E(x) = xmΓmξ− + ξ+ . (6.46)

In any case, the conserved supercurrent is of the universal form,

JM = −itr
(
Ψ̄ΓMδΨ

)
= +itr

(
δΨ̄ΓMΨ

)
. (6.47)

In Appendix C, we present the derivation.
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• Superconformal symmetry in 4D of arbitrary signature.
The 32 supersymmetries in 4D super Yang-Mills which consist of ordinary supersym-
metry and special superconformal symmetry read

δAM = iΨ̄ΓM (1 + xmΓm)ξ = −iξ̄(1 + xmΓm)ΓMΨ ,

δΨ = 1
2(1 + Γ(10))

[
1
2FMNΓMN (1 + xmΓm)− 2ΦaΓa

]
ξ ,

δΨ̄ = ξ̄
[−1

2(1 + xmΓm)FMNΓMN − 2ΦaΓa
]

1
2(1− Γ(10)) ,

(6.48)

where ξ is a 32 component Majorana spinor,

ξ∗ = B+ξ . (6.49)

The chiral decomposition of the spinor gives the ordinary supersymmetry and special
superconformal symmetry,11

ξ = ξ+ + ξ− , ξ± = 1
2(1± Γ(10))ξ . (6.50)

The 32 component Majorana supercurrent is of the form,

JM = +iQ̄Mξ = −iξ̄QM ,

QM = tr
[(

1
2(1 + xmΓm)FKLΓKL + 2ΦaΓa

)
ΓMΨ

]
,

Q̄M = tr
[
Ψ̄ΓM

(−1
2FKLΓKL(1 + xmΓm) + 2ΦaΓa

)]
= (QM )†A = (QM )TC+ .

(6.51)

The supercharge is given by

Q =
∫

d3x Q0 . (6.52)

11Note also E(x) = 1
2
(1 + Γ(10))(1 + xmΓm)ξ .
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A. Proof of the Theorem

Theorem 1
Any N ×N matrix, M , satisfying M2 = λ21N×N , λ 6= 0, is diagonalizable.

Proof
Suppose for some K, 1 ≤ K ≤ N , we have found a basis,

{ea, vr : 1 ≤ a ≤ K, 1 ≤ r ≤ N −K} (A.1)

such that
Mea = λaea , for 1 ≤ a ≤ K ,

Mvr = P s
rvs + ha

rea , for K + 1 ≤ r, s ≤ N .

(A.2)

From M2 = λ21N×N ,

λ2
a = λ2 ,

λ2vr = (P 2)s
rvs + [(hP )a

r + λah
a
r] ea ,

(A.3)

and hence,
P 2 = λ21(N−K)×(N−K) ,

(hP )a
r + λah

a
r = 0 .

(A.4)

The assumption holds for K = 1 surely. In order to construct eK+1 we first consider an
eigenvector of the (N −K)× (N −K) matrix, P ,

P r
sc

s = λK+1c
r , λ2

K+1 = λ2 , (A.5)

and set
v = crvr , ha = ha

rc
r ,

Mv = λK+1v + haea .

(A.6)

Consequently
(λK+1 + λa)ha = 0 : not a sum , (A.7)

so that
ha = 0 if λK+1 + λa 6= 0 . (A.8)

We construct eK+1, with K unknown coefficients, da, as

eK+1 = v + daea . (A.9)

From
MeK+1 = λK+1eK+1 + [ha + (λa − λK+1)da] ea , (A.10)
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we determine

da =





ha

λK+1 − λa
if λK+1 6= λa ,

any number if λK+1 = λa .

(A.11)

From (A.8) and λ2
K+1 = λ2

a = λ2 6= 0, we have

MeK+1 = λK+1eK+1 . (A.12)

This completes our proof.

If we set a N ×N invertible matrix, S, by

(S)b
a = (ea)b , Mea = λaea , 1 ≤ a, b ≤ N , (A.13)

then
S−1MS = diag(λ1, λ2, · · · , λN ) . (A.14)
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B. Gamma matrices in 4,6,10,12 dimensions

Our conventions are such that

γ̂m : m = 0, 1, 2, 3 for 1 + 3D ,

γµ : µ = 1, 2, · · · , 6 for 2 + 4D ,

γa : a = 7, 8, · · · , 12 for 0 + 6D ,

ΓM : M = 0, 1, 2, 3, 7, · · · , 12 for 1 + 9D ,

ΓM : M = 1, 2, · · · , 12 for 2 + 10D .

(B.1)

B.1 Four dimensions

In Minkowskian four dimension of the metric, η̂ = diag(− + ++), the gamma matrices
satisfy

γ̂mγ̂n + γ̂nγ̂m = 2η̂mn , (γ̂m)† = γ̂m , (B.2)

where m,n = 0, 1, 2, 3. The chiral matrix reads

γ̂(5) = −iγ̂0123 = (γ̂(5))−1 = (γ̂(5))† . (B.3)

The three pairs of unitary matrices, Â±, B̂±, Ĉ±, relate the hermitain conjugate, com-
plex conjugate, and the transpose of the gamma matrices,

±(γ̂m)† = Â±γ̂mÂ†± , Â†±Â± = 1 ,

±(γ̂m)∗ = B̂±γ̂mB̂†
± , B̂†

±B̂± = 1 ,

±(γ̂m)T = Ĉ±γ̂mĈ†
± , Ĉ†

±Ĉ± = 1 .

(B.4)

Especially in Minkowskian four dimensions, they can be chosen further to satisfy

Â+ = −iγ123 , Â− = −γ̂0 , Â− = Â+γ̂(5) ,

B̂∗±B̂± = ±1 , B̂T± = ±B̂± , B̂− = B̂+γ̂(5) ,

Ĉ± = B̂T
+Â± = B̂T±Â+ , ĈT± = −Ĉ± , Ĉ− = Ĉ+γ̂(5) .

(B.5)

B.2 Four to six dimensions

Using the four dimensional gamma matrices above, one can construct the six dimensional
gamma matrices in the off-block diagonal form,

γµ =

(
0 ρµ

ρ̄µ 0

)
, µ = 1, 2, · · · , 6 , ρµρ̄ν + ρν ρ̄µ = 2ηµν . (B.6)
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With the relevant choice of the metric,

η = diag(−−+ + ++) , (B.7)

we require ρ̄µ = (ρµ)† and set

γ1 = U (−iτ2 ⊗ 1) U † , γm+2 = U (τ1 ⊗ γ̂m) U † ,

γ6 = U
(
τ1 ⊗ γ̂(5)

)
U † , U =

(
Ĉ+ 0
0 1

)
.

(B.8)

Explicitly with (B.3), (B.5)

ρ1 = −Ĉ+ , ρm+2 = Ĉ+γ̂m , ρ6 = Ĉ− ,

ρ̄1 = +Ĉ−1
+ , ρ̄m+2 = γ̂mĈ−1

+ , ρ̄6 = Ĉ−1
− .

(B.9)

Note

γ(7) = iγ1γ2 · · · γ6 =

(
1 0
0 −1

)
, (B.10)

and especially the anti-symmetric property of the 4× 4 matrices,

(ρµ)αβ = −(ρµ)βα , (ρ̄µ)αβ = −1
2εαβγδ(ρµ)γδ . (B.11)

The spinorial indices, α, β = 1, 2, 3, 4, denote the fundamental representation of su(2, 2).
It follows that {ρµ} and {ρ̄µ} separately form bases for the anti-symmetric 4× 4 matrices
with the completeness relation,

tr(ρµρ̄ν) = 4δµ
ν , (ρµ)αβ(ρ̄µ)γδ = 2(δα

δδβ
γ − δβ

δδα
γ) . (B.12)

On the other hand, Eq.(B.8) implies that12

ρ[µρ̄νρλ] = +i1
6εµνλστκρ[σρ̄τρκ] , ρ̄[µρν ρ̄λ] = −i1

6εµνλστκρ̄[σρτ ρ̄κ] , (B.13)

so each of the sets ρ[µρ̄νρλ] ≡ ρµνλ or ρ̄[µρν ρ̄λ] ≡ ρ̄µνλ has only 10 independent components
and forms a basis for symmetric 4× 4 matrices,

tr(ρµνλρ̄στκ) = −i4 εµνλ
στκ − 24δ

[µ
σδν

τδ
λ]
κ ,

(ρµνλ)αβ(ρ̄µνλ)γδ = −24(δα
γδβ

δ + δβ
γδα

δ) .

(B.14)

Finally, {ρµν ≡ 1
2(ρµρ̄ν −ρν ρ̄µ)} or {ρ̄µν ≡ 1

2(ρ̄µρν − ρ̄νρµ)} forms an orthonormal basis for
the general 4× 4 traceless matrices,

tr(ρµνρλκ) = 4(δµ
κδν

λ − δν
κδµ

λ) , −1
8(ρµν)α

β(ρµν)γ
δ + 1

4δα
βδγ

δ = δα
δδγ

β , (B.15)

satisfying
(ρ̄µν)α

β = −(ρµν)β
α . (B.16)

12We put ε123456 = 1 and “[ ]” denotes the standard anti-symmetrization with “strength one”.
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B.3 Six dimensions

The result above can be straightforwardly generalized to other signatures in six dimensions.
In Euclidean six dimensions, gamma matrices satisfy

γaγb + γbγa = 2δab , (B.17)

where we set a, b run from 7 to 12, instead of 1 to 6, as the latter have been reserved for
so(2, 4). With the choice,

γ(7) = iγ7γ8 · · · γ12 =

(
1 0
0 −1

)
, (B.18)

the six dimensional gamma matrices are in the block diagonal form,

γa =

(
0 ρa

ρ̄a 0

)
, (B.19)

satisfying the hermiticity conditions,

ρ̄a = (ρa)† . (B.20)

We can further set all the 4× 4 matrices, ρa, ρ̄a to be anti-symmetric [?]

(ρa)α̇β̇ = −(ρa)β̇α̇ , (ρ̄a)α̇β̇ = −1
2εα̇β̇γ̇δ̇(ρa)γ̇δ̇ , (B.21)

which makes the relation, su(4) ≡ so(6), manifest. That is, the indices, α̇, β̇ = 1, 2, 3, 4,
denote the fundamental representation of su(4).

Note that precisely the same equations as (B.12)-(B.16) hold for the so(6) gamma
matrices, {ρa, ρ̄b} after replacing µ, ν, α, β by a, b, α̇, β̇, etc.

B.4 Ten dimensions again

Using the four and six dimensional gamma matrices above, we write the ten dimensional
gamma matrices,

Γm = γ̂m ⊗ γ(7) for m = 0, 1, 2, 3

Γa = 1 ⊗ γa for a = 7, 8, 9, 10, 11, 12 .

(B.22)

In the above choice of gamma matrices, we have from (6.27), (B.3), (B.18)

Γ(10) = γ̂(5) ⊗ γ(7) , (B.23)

and
A = Â+ ⊗ 1 , B± = C±A ,

B+ = B̂− ⊗
(

0 +1
−1 0

)
, B− = B̂+ ⊗

(
0 +1

+1 0

)
,

C+ = Ĉ− ⊗
(

0 −1
+1 0

)
, C− = Ĉ+ ⊗

(
0 +1

+1 0

)
.

(B.24)
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Majorana spinor is now of the form,

Ψ = B−1
+ Ψ∗ =




ψα
+α̇

ψαα̇−


 , (ψ†+)α

α̇ = (B̂−)αβψβα̇
− , (B.25)

where α is the so(1, 3) spinor index and ± denote the so(6) chirality.

Further to have 10 dimensional Majorana-Weyl spinor, imposing the chirality condi-
tion, Γ(10)Ψ = Ψ, we also have

γ̂(5)ψ± = ±ψ± . (B.26)

For the later convenience, we define ψαα̇, ψ̄αα̇ by

ψαα̇ = i(Ĉ+)αβψβ
+α̇ , ψ̄αα̇ = ψαα̇− . (B.27)

The Majorana condition is equivalent to

ψ̄αα̇ = Aα
β(ψ†)βα̇ , A = iÂ− = A† = A−1 . (B.28)

B.5 Twelve dimensions

In order to make the SO(2, 4) × SO(6) isometry of AdS5 × S5 geometry manifest, it is
convenient to employ the twelve dimensional gamma matrices of spacetime signature, (−−
+ + + + + + + + ++), and write them in terms of two sets of six dimensional gamma
matrices, {γµ}, {γa}, which we reviewed above,

Γµ = γµ ⊗ γ(7) for µ = 1, 2, 3, 4, 5, 6

Γa = 1 ⊗ γa for a = 7, 8, 9, 10, 11, 12 .

(B.29)

In the above choice of gamma matrices, the twelve dimensional charge conjugation
matrices, C±, are given by

±(ΓM)T = C±ΓMC−1
± , M = 1, 2, · · · , 12, C± =

(
0 1
±1 0

)
⊗

(
0 1
∓1 0

)
, (B.30)

while the complex conjugate matrices, A±, read

A± =

(
At 0
0 ∓A

)
⊗

(
1 0
0 ±1

)
, A = −iρ̄12 = −iγ̂0 = iÂ− = A† = A−1 , (B.31)

satisfying
±(ΓM)† = A±ΓMA−1

± . (B.32)

In particular, for µ = 1, 2, · · · , 6, we have

(ρµ)† = −Aρ̄µAt = ρ̄µ , (ρ̄µ)† = −AtρµA = ρµ . (B.33)
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Now if we define the twelve dimensional chirality operator as

Γ(13) ≡ γ(7) ⊗ γ(7) , (B.34)

then
{Γ(13), ΓM} = 0 , C− = C+Γ(13) , A− = A+Γ(13) . (B.35)

In 2+10 dimensions it is possible to impose the Majorana-Weyl condition on spinors to have
sixteen independent complex components which coincides with the number of supercharges
in the AdS5 × S5 superalgebra, su(2, 2|4). Up to the redefinition of the spinor by a phase
factor, there are essentially two choices for the Majorana-Weyl condition depending on the
chirality,

Ψ = ±Γ(13)Ψ , and Ψ̄ = Ψ†A+ = ΨTC+ . (B.36)

Our choice will be the plus sign so that the 2+10 dimensional Weyl spinor carries the same
chiral indices for su(2, 2) and su(4), i.e. Ψ = (ψαα̇ , ψ̄αα̇)T , while the Majorana condition
relates them as ψ̄αα̇ = Aα

β(ψ†)βα̇ which is identical to (B.28). Hence, the Majorana-Weyl
spinor in 2 + 10 dimenisons can be identified as the Majorana spinor in 1 + 9 dimensions.
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C. Looking for the general odd symmetry

With a Majorana-Weyl spinor, E , ∆Ψ, which may depend on xM , we focus on the following
transformations,

δAM = iΨ̄ΓME = −iĒΓMΨ , δΨ = 1
2FMNΓMNE + ∆Ψ , (C.1)

so that
δΨ̄ = −1

2 ĒFMNΓMN + ∆Ψ . (C.2)

Note that ∆Ψ is Lie algebra valued, while E is not.

From

ΨpαΨqβΨrγtr(TpTqTr) = ΨpγΨqαΨrβtr(TpTqTr) = ΨpβΨqγΨrαtr(TpTqTr) , (C.3)

and the identity (6.28), we note that the second term in (6.42) vanishes

tr
(
Ψ̄ΓMΨΨ̄ΓME

)
= 0 . (C.4)

We also get, using the Bianchi identity (6.39),

Ψ̄ΓMDMδΨ = 1
2DLFMN Ψ̄(ΓLMN + 2ηLMΓN )E + 1

2Ψ̄ΓLΓMN∂LEFMN + Ψ̄ΓLDL∆Ψ

= −iDMFMNδAN + 1
2Ψ̄ΓLΓMN∂LEFMN + Ψ̄ΓLDL∆Ψ .

(C.5)

Thus, semi-finally, we obtain

δL = −i tr
[

1
2FMN Ψ̄ΓLΓMN∂LE + Ψ̄ΓLDL∆Ψ

]
+ ∂N tr

[
FMNδAM + i1

2Ψ̄ΓNδΨ
]

. (C.6)

We first note that constant E , and constant ∆Ψ which is central in the Lie algebra lead to
the ordinary and kinetic supersymmetries

E , ∆Ψ : constant and ∆Ψ ∝ 1N×N . (C.7)

Henceforth, keeping the dimensional reduction either to Minkowskian d-dimensions,
0 ≤ m ≤ d− 1, d ≤ a ≤ 9, or Euclidean d-dimensions, 1 ≤ m ≤ d, a = 0, d + 1 ≤ a ≤ 9,
we set Aa = Φa, “ ∂a ≡ 0 ”, and look for some possibilities of more general symmetries.

Since
FMNΓLΓMN∂LE =

(
FmnΓlΓmn + 2DmΦbΓlΓmb + DaΦbΓlΓab

)
∂lE , (C.8)

we first require
ΓlΓmn∂lE = 0 , (C.9)
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or equivalently
ΓmnΓl∂lE = 2Γm∂nE − 2Γn∂mE . (C.10)

It follows after multiplying Γnm without m, n summing,

Γl∂lE = 2Γm∂mE + 2Γn∂nE : no sum for m 6= n . (C.11)

Eqs.(C.9), (C.10), (C.11) are trivial when d = 0, 1. For d ≥ 2, summing over m 6= n in
(C.11) we get

(d− 1)(d− 4)Γl∂lE = 0 . (C.12)

Hence, for d = 2, 3, d ≥ 5,

Γm∂mE = −Γn∂nE : no sum and m 6= n . (C.13)

• For d = 3, d ≥ 5, we easily conclude ∂mE = 0, i.e. constant parameter, E .

• When d = 2, we get
∂mE = −Γmn∂nE : for d = 2 , (C.14)

so that
∂m∂mE = 0 . (C.15)

Let σ 6= τ be the two different spacetime indices in d = 2 case. Eq.(C.9) is simply
equivalent to

(∂σ + Γσ
τ∂τ )E = 0 . (C.16)

This can be solved easily in the diagonal basis of Γσ
τ . In the Minkowskian two-

dimensions, as Γ0
1 is hermitian, the solution is given by the left and right modes,

σ ± τ . On the other hand, in the Euclidean two-dimensions, Γ1
2 is anti-hermitian

and the solution involves holomorphic functions, σ ± iτ .

• For d = 4 we have for any m,

∂mE = Γmξ− , ξ− = 1
4Γl∂lE . (C.17)

From ∂[m∂n]E = 0 we get an essenitally same relation as (C.13),

Γm∂mξ− = −Γn∂nξ− : no sum and m 6= n . (C.18)

Hence, ξ− is a constant spinor, and

E = xmΓmξ− + ξ+ , (C.19)

where ξ+, ξ− are constant Majorana-Weyl spinors of the opposite chiralities, cor-
responding to the ordinary supersymmetry and special superconformal symmetry,
respectively.

Provided the above solutions for (C.9), we are ready for the full analysis.
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1. When d = 0 : IKKT matrix model.
Eq.(C.8) becomes trivial, and we natually require

Γa[Φa, ∆Ψ] = 0 . (C.20)

We need to find the algebraic solution for ∆Ψ in terms of the Lie algebra valued fields,
Φa, d ≤ a ≤ 9. Clearly, the kinetic supersymmetry transformation, i.e. ∆Ψ ∝ 1N×N ,
satisfies the above equation. In fact, we can show that this is the most general solu-
tion.

Proof
We consider the special case, Φa = 0, d ≤ a ≤ 7. Eq.(C.20) gives

[Φ8,Γ8∆Ψ] + [Φ9, Γ9∆Ψ] = 0 . (C.21)

Multiplying Φ8 and taking the u(N) trace we get

tr ([Φ8, Φ9]∆Ψ) = 0 . (C.22)

Since the commutator, [Φ8, Φ9], can be arbitrary except 1N×N , we conclude that
∆Ψ ∝ 1N×N . This completes our proof.

Therefore, when d = 0, E and ∆Ψ are simply constant Majorana-Weyl spinors corre-
sponding to the ordinary and the kinetic supersymmetries.

2. When d = 1 : BFSS matrix model.
Eq.(C.9) is trivial, and with the coordinate, τ for d = 1, From Eq.(C.6) we require

0 = 1
2FMNΓLΓMN∂LE + ΓLDL∆Ψ

= ΓτDτ (∆Ψ + ΦaΓτa∂τE) + ΓbDb(∆Ψ − 1
2ΦaΓτa∂τE)− ΦaΓa∂τ∂τE .

(C.23)

The only possible algebraic solutions are (C.7) corresponding to the ordinary and the
kinetic supersymmetries.

3. When d = 2.
From (C.6) we require, using (C.14), (C.15),

0 = 1
2FMNΓLΓMN∂LE + ΓLDL∆Ψ

= ΓmDm∆Ψ + ΓaDa∆Ψ + 2(DτΦa −DσΦaΓσ
τ )Γa∂τE .

(C.24)

We conclude again that the only possible algebraic solutions are (C.7) corresponding
to the ordinary and the kinetic supersymmetries.

4. When d = 3, d ≥ 5.
Since E is constant, the only possible algebraic solutions are (C.7) corresponding to
the ordinary and the kinetic supersymmetries.
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5. When d = 4.
From (C.6) we require, using (C.19),

0 = 1
2FMNΓLΓMN∂LE + ΓLDL∆Ψ

= ΓLDL(∆Ψ + 2ΦaΓaξ−) .

(C.25)

Thus the algebraic solution reads

∆Ψ + 2ΦaΓaξ− ∝ 1N×N . (C.26)
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