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Chapter 1

QED Review

1.1 Maxwell’s equations

1. Let us define covariant(xµ) and contravariant (xµ) vectors as

xµ ≡ (t,+x) , xµ ≡ (t,−x) . (1.1)

2. Show that

∂µ ≡ ∂

∂xµ
=
(
∂

∂t
,+∇

)
, ∂µ ≡ ∂

∂xµ
=
(
∂

∂t
,−∇

)
(1.2a)

3. Show that ∂µ(∂µ) transforms like xµ(xµ).

4. Show

∂2 =
∂

∂t

2

−∇2. (1.3)

5. Show

∂ · J =
∂

∂t
J0 + ∇ · J . (1.4)

6. Using the potential Aµ = (φ,A), express the electromagnetic fields

E = −∂A

∂t
−∇φ, (1.5a)

B = ∇×A. (1.5b)

7. Show that

Ei = − ∂

∂x0
Ai − ∂

∂xi
A0 = −∂0Ai + ∂iA0, (1.6a)

Bi = εijk
∂

∂xj
Ak = −εijk∂jAk. (1.6b)
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8. Defining the field-strength tensor

Fµν ≡ ∂µAν − ∂νAµ, (1.7)

show that

Ei = ∂iA0 − ∂0Ai = −F 0i,

Bi = −1
2
εijkF jk.

9. Express the field strength tensor in a matrix form as

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , (1.8a)

Fµν = gµαF
αβgβν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 . (1.8b)

10. Show that
Fµν = Fµν(E → −E). (1.9)

11. Let us define the dual field-strength tensor Fµν as

Fµν = −1
2
εµναβFαβ , (1.10)

where εµναβ is a totally antisymmetric tensor and ε0123 = −ε0123 = +1.

12. Show that

Fµν =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 = Fµν(E → B,B → −E). (1.11)

13. Show that

∇ · V = ∂iV
i,

(
∂

∂t
V

)i

= ∂0V i (1.12a)

(∇× V )i = εijk∂jV
k = −εijk∂jV k (1.12b)

εijk∂i∂jV k = 0 (1.12c)
εijk∂iF jk = 0 (1.12d)

(∇×E)i =
1
2
εijk∂0F jk,

∂Bi

∂t
= −1

2
εijk∂0F jk (1.12e)

(∇×B)i = ∂jF
ji, − ∂Ei

∂t
= ∂0F

0i (1.12f)
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14. Show that

∇ ·E = ρ → ∂0F
00 + ∂iF

i0 = J0 (1.13a)

∇×B − ∂E

∂t
= J → ∂0F

0i + ∂jF
ji = J i (1.13b)

∇ ·B = 0 → 1
2
εijk∂iF jk ≡ 0 : ∂iF i0 = 0 (1.13c)

∇×E +
∂B

∂t
= 0 → 1

2
εijk∂0F jk − 1

2
εijk∂0F jk = 0 (1.13d)

: ∂0F0i + ∂jF ji = 0 (1.13e)

15. You have shown that Maxwell’s equations reduce into the form

∂µF
µν = Jν , ∂µFµν = 0 (1.14)

1.2 Gauge

16. Show that ∂µ∂νχ− ∂ν∂µχ = 0, where χ is a Lorentz scalar function.

17. Show that Fµν is invariant under the gauge transformation

Aµ → Aµ + ∂µχ, (1.15)

and the electromagnetic fields E and B are also gauge invariant.

18. Show that the Maxwell’s equations are gauge invariant.

19. Let us use the Lorentz gauge ∂ ·A = 0. Show that the Maxwell’s equations reduce into

∂2Aµ = Jµ. (1.16)

20. We can make another gauge transformation

Aµ → Aµ + ∂µΛ. (1.17)

Show that Λ satisfies the Lorentz condition ∂2Λ = 0.

21. Show that
Aµ = εµ(p)e−ip·x. (1.18)

is a solution to the free photon(Jµ = 0) equation with

p2 = 0, ε · p = 0. (1.19)

22. Choosing Λ = iae−ip·x, where a is a scalar, show that the gauge invariance condition ensures
that the transformation

εµ → ε′µ = εµ + apµ (1.20)

does not change physical results.
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23. If we choose a such that ε′0 = 0, show that

ε · p = 0 (1.21)

and it is equivalent to the Coulomb gauge ∇ ·A = 0.

24. Show that the transverse condition ε · p = 0 and Coulomb gauge condition ε · p = 0 restricts the
photon to have only two degrees of freedom

εµ = (0, 1, 0, 0), (0, 0, 1, 0) (1.22)

if pµ = (E, 0, 0, E).

25. We have shown that there are only two independent parameters describing the polarization vector
εµ of the photon. There are only two polarization(spin) states for a massless spin-1 particle.

26. Show that spin-1 wavefunction is expressed in terms of spherical harmonics for |` = 1, `z〉 states
as

Y ±1 (θ, φ) = ∓
√

3
8π

sin θe±iφ =

√
3
4π

r̂ · ε(±), (1.23a)

Y 0
1 (θ, φ) =

√
3
4π

cos θ =

√
3
4π

r̂ · ε(0). (1.23b)

where r̂ = (sin θ cosφ, sin θ sinφ, cosφ).

27. We can express the spherical harmonics in Cartesian coordinate system, which is convenient for
vector transformation. The polarization vectors ε(λ) are defined by

ε(±) = ∓ 1√
2

(x̂± iŷ) = ∓ 1√
2
(1,±i, 0) (1.24a)

ε(0) = ẑ = (0, 0, 1) (1.24b)

28. Show that the polarization vectors are expressed using four-vector nontation as

εµ(±) = ∓ 1√
2
(0, 1,±i, 0), (1.25a)

εµ(0) = (0, 0, 0, 1). (1.25b)

29. Show that massless photon’s wavefunction is a linear combination of εµ(±). The longitudinal
state εµ(0) is not allowed.

30. Show the orthogonality conditions

ε∗(λ) · ε(λ′) = δλλ′ , (1.26a)
ε∗(λ) · ε(λ′) = −δλλ′ . (1.26b)

31. Show that the spin sum of the polarization tensor is

∑
λ=±

εi∗(λ)εj(λ) = δij
⊥ = δij − ẑiẑj =

 1 0 0
0 1 0
0 0 0


ij

, (1.27a)

if kµ = (k, 0, 0, k).
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32. Show that the spin sum of the polarization tensor is

∑
λ=±

εi∗(λ)εj(λ) = δij
⊥ = δij − kikj

k2
. (1.28a)

if kµ = (|k|,k). The polarization sum is for the Coulomb gauge, where ∇ ·A = 0.

33. Defining n = (1, 0, 0,−1) when p = (E, 0, 0, E), show that we may write it in a Lorentz covariant
form

∑
λ=±

ε∗µ(λ)εν(λ) =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


µν

= −gµν +
pµnν + nµpν

p · n
(1.29a)

34. The formula
Πµν =

∑
λ=±

ε∗µ(λ)εν(λ) = −gµν +
pµnν + nµpν

p · n
(1.30)

is valid for any light-like vector n2 = 0 satisfying ε ·p 6= 0, n ·p 6= 0, and n · ε = 0. Show explicitly
that

Πµ
µ = −2, (1.31a)

nµΠµν = 0, nνΠµν = 0, (1.31b)
pµΠµν = 0, pνΠµν = 0. (1.31c)

The polarization sum is for the light-cone gauge, where n ·A = 0 with n2 = 0.

35. We can extend our formula to the case n2 6= 0 keeping ε · p 6= 0, n · p 6= 0, and n · ε = 0. Derive

Πµν =
∑
λ=±

ε∗µ(λ)εν(λ) = −gµν +
pµnν + nµpν

p · n
− n2pµpν

(p · n)2
. (1.32)

from the conditions

Πµ
µ = −2, (1.33a)

nµΠµν = 0, nνΠµν = 0, (1.33b)
pµΠµν = 0, pνΠµν = 0, (1.33c)

The polarization sum is for the axial gauge, where n ·A = 0 with n2 6= 0.

1.3 Lagrangian

36. Euler-Lagrange equation: Action is defined by

S =
∫
d4xL(φ, ∂µφ). (1.34)
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Show that under the variation φ→ φ+ δφ, where φ and ∂µφ are fixed at the end points

δS =
∫
d4xδL(φ, ∂µφ) =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ∂µφ

]
(1.35a)

=
∫
d4x

[
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

]
δφ, (1.35b)

where we neglected the surface term∫
d4x∂µ

[
∂L

∂(∂µφ)
δφ

]
=
∫
daµ

∂L
∂(∂µφ)

δφ. (1.36a)

37. Show that δS = 0 if φ satisfies the Euler-Lagrange equation

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0. (1.37)

38. real scalar field If
L =

1
2
(∂µφ∂

µφ−m2φ2), (1.38)

show that the Euler-Lagrange equation is the Klein-Gordon equation

(∂2 +m2)φ = 0. (1.39)

This leads to p2 = m2.

39. Symmetry and conserved current If the Lagrangian is invariant under a transformation
φ→ φ+ δφ, show that

δL(φ, ∂µφ) =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ∂µφ, (1.40a)

=
[
∂µ

∂L
∂(∂µφ)

]
δφ+

∂L
∂(∂µφ)

∂µ(δφ) (1.40b)

= ∂µ

[
∂L

∂(∂µφ)
δφ

]
= 0. (1.40c)

If there is symmetry, there is a corresponding conserved quantity.

40. The conserved (∂ · J = 0) current

Jµ ∝ ∂L
∂(∂µφ)

δφ. (1.41)

41. If the current is vanishing on a boundary surface, charge inside the surface is conserved

∂Q

∂t
= −

∫
d3x∇ · J = −

∫
da · J = 0, (1.42a)

where Q =
∫
d3xJ0.
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42. Show that

−1
2
FµνFµν = E2 −B2 (1.43a)

43. Show that

L = −1
4
FµνFµν − JµAµ =

1
2
(
E2 −B2

)
− ρφ+ J ·A

44. Show that the Euler-Lagrange equation for the Lagrangian is the Maxwell’s equations

∂µF
µν = Jν ; (∂2 − ∂µ∂ν)Aν = Jν (1.44)

1.4 Classical charged-particle Lagrangian

45. Consider a particle with the charge q and mass m moving in an external electromagnetic field.
The equation of motion is

dE

dt
= qv ·E, dp

dt
= q (E + v ×B) . (1.45a)

46. Let us define the four-velocity in Lorentz covariant notation

uµ =
dxµ

dτ
= γ(1,v). (1.46)

show that u2 = 1.

47. Using the four-velocity in Lorentz covariant notation, show that

dpµ

dτ
= qγ (v ·E,E + v ×B) = qFµνuν , (1.47)

where pµ = muµ and m is the rest mass of the particle.

48. Show that

Fµνuν = γ


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0




1
−v1

−v2

−v3

 (1.48a)

= γ


v1E1 + v2E2 + v3E3

E1 + (v2B3 − v3B2)
E2 + (v3B1 − v1B3)
E3 + (v1B2 − v2B1)


µ

. (1.48b)
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49. Free particle Lagrangian: Consider a free particle with a massm. The action must be Lorentz
invariant and the only available Lorentz invariant scalar is m.

S =
∫ tf

ti

Ldt =
∫ tf

ti

γLdτ = f(m). (1.49)

and Lγ must be a scalar. And the dimension must be order of mass. Let us try

L = −m
γ

= −m
√

1− v2. (1.50)

Show that the Euler-Lagrange equation is

∂

∂t

(
∂L

∂vi

)
− ∂L

∂xi
= 0, (1.51a)

∂L

∂vi
=

mvi

√
1− v2

= γmvi, (1.51b)

∂

∂t
(mγvi) = 0. (1.51c)

Momentum is conserved! ← free particle.

50. Show that corresponding Hamiltonian is

pi =
∂L

∂vi
= − ∂

∂vi

√
1− v2 =

mvi

√
1− v2

, (1.52a)

H = pivi − L =
mv2

√
1− v2

+m
√

1− v2 (1.52b)

=
m√

1− v2
− m(1− v2)√

1− v2
+m

√
1− v2 (1.52c)

=
m√

1− v2
= γm =

√
p2 +m2. (1.52d)

51. Charged particle Lagrangian: In nonrelativistic quantum mechanics, Lint = −Vint. If we
consider the electrostatic potential in nonrelativistic quantum mechanics,

Lint = −Vint = −qφ. (1.53)

52. Let us construct a Lorentz scalar. As we did for a charged particle, γL must be Lorentz invariant
and in the nonrelativistic limit the Lagrangian must reduce the form shown above.

Lint = −qu ·A
γ

, (1.54)

where uµ = γ(1,v) and Aµ = (φ,A).

53. Therefore,

L = −m+ qv ·A
γ

= −m
√

1− v2 − qφ+ qv ·A (1.55)
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Conjugate momentum is

P i =
∂L

∂vi
= γmvi + qAi = (p + qA)i → v =

P − qA
γm

, (1.56a)

1 = γ2(1− v2) = γ2 − (P − qA)2

m2
, (1.56b)

→ γm =
√

(P − qA)2 +m2 → v =
P − qA√

(P − qA)2 +m2

. (1.56c)

54. Show that

(P − qA) · v =
(P − qA)2√

(P − qA)2 +m2

, (1.57a)

m

γ
=

m2

γm
=

m2√
(P − qA)2 +m2

. (1.57b)

Then the Hamiltonian is

H = P · v − L = (P − qA) · v +
m

γ
+ qφ (1.58a)

=
√

(P − qA)2 +m2 + qφ (1.58b)

55. The Hamiltonian for a charged particle

H =
√

(P − qA)2 +m2 + qφ. (1.59)

is same as that for a free particle
H =

√
p2 +m2 (1.60)

when we substitute

H → H − qφ (1.61a)
p → P − qA. (1.61b)

56. Show that mass-shell condition still holds

p2 = m2, pµ = (E − qφ,P − qA) , (1.62)

where E is the total energy of the particle

57. Nonrelativistic case: Show that in the nonrelativistic(NR) limit

H =
√

(P − qA)2 +m2 + qφ→ (P − qA)2

2m
+ qφ. (1.63)

We could have derived the form from the free particle equation

H =
p2

2m
← [H → H − qφ, p→ P − qA] . (1.64)
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58. Schrödinger equation for a charged particle: For a free particle, we replace

p→ −i∇, H → i
∂

∂t
, (1.65)

which generate p and E once they act on the free-particle wavefunction e−ip·x, and apply the
operator to the wavefunction ψ.

i
∂

∂t
ψ =

(−i∇)2

2m
ψ (1.66)

59. Show that the Schrödinger equation for a charged particle is

(H − qφ)ψ =
(P − qA)2

2m
ψ, (1.67a)

i

(
∂

∂t
+ iqA0

)
ψ = −(−∇ + iqA)2

2m
ψ. (1.67b)

1.5 Gauge Invariance and Covariant Derivative

60. Let us define the covariant derivative

Dµ ≡ ∂µ + iqAµ =
(
D0,−D

)
=
(
∂

∂t
+ iqA0,−∇ + iqA

)
. (1.68)

Show that the shrödinger equation becomes

iD0ψ = −D2

2m
ψ. (1.69)

61. Let us replace ψ → ψ′ = Uψ, where the transformation keeps the probability

ψ†ψ = ψ′†ψ′ → U †U = 1. (1.70)

Therefore U is unitary.

62. We know physical observables are invariant under the gauge transformation

Aµ → A′µ = Aµ + ∂µχ. (1.71)

We will find there IS a gauge transformation that keeps the Shrödinger equation invariant under
the unitary transformation ψ → ψ′ = Uψ.

D′µ = ∂µ + iqA′µ = ∂µ + iq(Aµ + ∂µχ) = Dµ + iq∂µχ (1.72a)
D′0 = ∂0 + iq(A0 + ∂0χ) (1.72b)
−D′ = −∇ + iq(A−∇χ). (1.72c)

Show, if ∂µχ = i
q (∂µU)U †, that

D′0Uψ = UD0ψ, D′Uψ = UDψ (1.73a)
(D′)2Uψ = D′(UDψ) = UD2ψ (1.73b)

Therefore, Schrödinger equation is invariant under the gauge transformation

Aµ → A′µ = UAµU † +
i

q
(∂µU)U †, ψ → ψ′ = Uψ, U †U = 1 (1.74)
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1.6 Scalar particle

63. Scalar particle and EM interaction Remember

H =
√

p2 +m2 → H2 = p2 +m2. (1.75)

Klein-Gordon equation is the wave equation for a scalar particle that can be obtained by the
replacement H → i∂0 and p = −i∇, that is pµ → i∂µ

(∂2 +m2)φ = 0. (1.76)

We have checked that the Lagrangian for the equation of motion is

L =
1
2
(∂µφ∂µφ−m2φ2). (1.77)

If we introduce a complex scalar field, that can be constructed as a linear combination of two
real scalar fields as

φ =
1√
2
(φ1 + iφ2) (1.78)

φ∗ 6= φ.

64. Using the fact that φ1 and φ2 are satisfying the Klein-Gordon equation, show that φ and φ∗ also
satisfies the Klein-Gordon equation.

(∂2 +m2)φ = 0, (∂2 +m2)φ∗ = 0. (1.79)

65. Show that the Lagrangian is
L = ∂µφ∗∂µφ−m2φ∗φ. (1.80)

Now we can introduce the covariant derivative to the complex scalar field.

L = (Dµφ)†(Dµφ)−m2φ†φ, Dµ = ∂µ + iqAµ. (1.81)

66. Show that the Lagrangian is invariant under the gauge transformation

φ → Uφ, U †U = 1, (1.82a)

Aµ → UAµU † +
i

q
(∂µU)U †. (1.82b)

67. The Lagrangian for the electromagnetic field is

L = −1
4
FµνFµν − JµAµ. (1.83a)

Show that the current Jµ is
Jµ = +iq

[
φ†∂µφ− (∂µφ†)φ

]
, (1.84)

by expanding the covariant derivative.
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68. Show that the Jµ is conserved
∂µJ

µ = 0 (1.85)

by using the Klein-Gordon equation.

69. Show that
Q =

∫
d3xJ0 = 0 (1.86)

for a real scalar field φ∗ = φ.

70. Show that the current becomes
Jµ = q × |N |22pµ. (1.87)

if we use the free-particle wavefunction φ = Ne−ip·x and φ∗ = N∗eip·x, where N is the normal-
ization factor.

71. Show that, if
∫
d3x = V ,

Q =
∫
d3xJ0 = q × |N |22EV. (1.88)

72. Choose the covariant normalization N = 1/
√
V and show that the charge inside the volume

V =
∫
d3x is

Q =
∫
d3xJ0 = q × 2E. (1.89)

73. q is the charge of the particle φ.

74. Show that 2E is the number of particles in V .

75. Show that the charge Q in V is not Lorentz invariant.

76. The number of particles in V is 2m if the particle is at rest. Explain why the density is increasing
with a factor E/m compared to that for the rest frame because of the length contraction.

77. Negative energy solution to the Klein-Gordon equation: Let us go back to the Klein-
Gordon equation

(∂2 +m2)φ = 0. (1.90)

Show that there are two solutions

φ+ = Ne−ip·x, φ− = Ne+ip·x (1.91)

where p = (E,p) with E =
√

p2 +m2 > 0.

78. Show that Jµ(φ = φ+) = q × 2pµ|N |2 and Jµ(φ = φ−) = −q × 2pµ|N |2.

79. Show that Jµ(φ = φ−) = q × 2(−pµ) means that a negative energy particle with charge +q is
flowing from the future to the past.

80. Show that Jµ(φ = φ−) = (−q) × 2pµ means that a positive energy particle with charge −q is
flowing from the past to the future.

81. Combining the two equivalent statements, we conclude as follows. Once we know how to deal
with a scalar particle with charge +q, the wavefunction for a positive-energy scalar particle with
charge −q can be described in terms of the negative-energy scalar particle with charge +q flowing
backward!
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1.7 Time-dependent perturbation theory

82. Consider

H = H0 + V, H0 =
p2

2m
, (1.92a)

H0φn = Enφn,

∫
d3xφ∗m(x)φn(x) = δmn. (1.92b)

Write the wavefunction ψ in terms of the eigenfunctions of the unperturbed Hamiltonian as

ψ =
∑

n

an(t)φne
−iEnt. (1.93)

Solve an satisfying

i
∂

∂t
ψ = (H0 + V )ψ (1.94)

to get

i
∑

n

∂an(t)
∂t

φn(x)e−iEnt =
∑

n

an(t)V (t,x)φn(x)e−iEnt. (1.95)

83. Show that an(t→ −∞) = δni means the initial state is monochromatic

ψ(t = −∞) = φi(x)e−iEit. (1.96)

84. Convoluting ∫
d3xφ†f (x)eiEf t, (1.97)

show that

afi = δfi − i
∫
dtd3xφ†f (x)V (t,x)φi(x)ei(Ef−Ei)t (1.98)

85. In short

ψ(t→∞) = Sψ(t→ −∞), (1.99a)
S = 1 + iT , (1.99b)

iT = −i
∫
d4xφ∗f (x)V φi(x) = i

∫
d4xLint = Lint. (1.99c)

86. Show that, if T is Hermitian
T † = T ↔ Lint, (1.100)

S is unitarity S†S = 1. Therefore,

ψ†ψ(t =∞) = ψ†ψ(t = −∞). (1.101)
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87. Energy-momentum conservation: If the potential is independent of time V (t,x) = V (x),
iTfi becomes

iTfi = −iVfi

∫ ∞
−∞

dtei(Ef−Ei)t = −iVfi(2π)δ(Ef − Ei), (1.102a)

Vfi =
∫
d3xφ†f (x)V (x)φi(x), (1.102b)

and the energy is conserved.
p2

f

2m
=

p2
i

2m
. (1.103)

88. In general, pf 6= pi. Where is the lost momentum, pi − pf? It has been transferred to the
potential because

V (x) =
∫

d3k

(2π)3
V (k)e+ik·x, (1.104a)

φ†f (x) = Nfe
+ipf ·x, (1.104b)

φi(x) = Nie
−ipi·x. (1.104c)

89. Show that
Vfi = NfNi

∫
d3kV (k)δ(k + pf − pi) = NfNiV (pi − pf ). (1.105)

Therefore, momentum is conserved k + pf = pi.

1.8 Propagator

90. Propagator for a scalar particle: Let us recall the transition matrix

iT = i

∫
d4xLint. (1.106)

We choose Lint = −φ†J which is analogous to the electromagnetic interaction lagrangian −JµA
µ.

Resulting lagrangian for a scalar field is

L = φ†
(
−∂2 −m2

)
φ− φ†J, (1.107)

where we neglect the surface term. Then the wave equation becomes

∂L
∂φ†

= 0 →
(
∂2 +m2

)
φ = −J. (1.108)

Show that
φ(x) =

∫
dy4∆F (x− y)J(y), (1.109)

if (
∂2 +m2

)
∆F (x) = −δ(x). (1.110)

Hint: Act ∂2 +m2 to both sides.
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91. Show that

iT = i

∫
d4xLint = −i

∫
d4xJ(x)φ(x) (1.111a)

= −i
∫
d4xd4yJ(x)∆F (x− y)J(y) (1.111b)

=
∫
d4xd4y [−iJ(x)] [i∆F (x− y)] [−iJ(y)] (1.111c)

92. i∆F (x − y) is the Feynman propagator. It describes the propagation of a scalar field from a
space-time point y to x.

93. Show that ∫ ∞
−∞

dp0

2π
e−ip0x0

p0 − E + iε
= −i e−iEx0

, if x0 > 0, (1.112)

Hint: Use Cauchy integral formula. Explain why the above integral is same as the complex
integral along a contour closed on the lower-half plain.

94. Show that ∫
dp0

2π
e−ip0x0

p0 + E − iε
= +i eiEx0

, if x0 < 0, (1.113)

Explain why the above integral is same as the complex integral along a contour closed on the
upper-half plain.

95. Show that ∫
dp0

2π
e−ip0x0

p2 −m2 + iε
=

∫
dp0

2π
e−ip0x0

(p0)2 − (E2 − iε)

=
∫
dp0

2π
e−ip0x0

(p0 + E − iε)(p0 − E + iε)

=
−i
2E

(
θ(x0)e−iEx0

+ θ(−x0)e+iEx0
)

(1.114a)

where E =
√

p2 +m2 > 0, ε→ 0+ and

θ(x) =
{

1 if x > 0
0 if x < 0

(1.115)

96. Explain why the sign of iε is important.

97. Explain what is wrong if ε is finite.

98. Show that ∫
d4p

(2π)4
i

p2 −m2 + iε
e−ip·x (1.116a)

=
∫

d3p

2E(2π)3
[
θ(x0)e−i(Et−p·x) + θ(−x0)ei(Et−p·x)

]
(1.116b)

=
∫

d3p

2E(2π)3
[
θ(x0)e−ip·x + θ(−x0)eip·x

]
(1.116c)

where E =
√
m2 + p2 > 0 and p0 = E on the last line.
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99. Show that the retarded term θ(x0) is for the particle propagating to the future.

100. Show that the advanced term θ(−x0) term is for the particle to the past.

101. Show that

∆F (x) =
∫

d4p

(2π)4
e−ip·x

p2 −m2 + iε
(1.117)

is the solution to the equation (
∂2 +m2

)
∆F (x) = −δ(x) (1.118)

1.9 Photon propagator

102. The iT matrix for a photon field is

iT = i

∫
d4xLint = −i

∫
d4xJµAµ, (1.119)

where the equation of motion is Maxwell’s equation

∂νF
νµ = Jµ;

(
∂2gµν − ∂µ∂ν

)
Aν = Jµ. (1.120)

103. We want to find the solution to(
∂2gµα − ∂µ∂α

)
(DF )αν(x) = gµ

νδ(x). (1.121)

Aµ(x) =
∫
dy4Dµν

F (x− y)Jν(y) (1.122a)

if
(
∂2gµα − ∂µ∂α

)
(DF )αν = gµ

νδ(x). (1.122b)

104. Show that

T = i

∫
d4xLint = −i

∫
d4xJµ(x)Aµ(x) (1.123)

= −i
∫
d4xd4yJµ(x)Dµν

F (x− y)Jν(y) (1.124)

=
∫
d4xd4y [−iJµ(x)]

[
iDµν

F (x− y)
]
[−iJν(y)] (1.125)

i∆µν
F (x − y) is the Feynman propagator. It describes the propagation of a vector field from a

space-time point y to x.

105. Propagator in the Feynman gauge: If we choose the Lorentz gauge, ∂ ·A = 0, and we may
neglect the term ∂µ∂ν terms in the wave equations. Maxwell’s equation becomes

∂2Aµ = Jµ. (1.126)
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Show that

Dµν
F (x) =

∫
d4p

(2π)4
−gµν

p2 + iε
e−ip·x = −gµν∆F (x) with m = 0 (1.127)

is the solution to the equation

∂2gµα(DF )αν = gµ
νδ(x). (1.128)

106. Show that the wave equation
∂2Aµ = Jµ (1.129)

is actually from the Lagrangian

L = −1
4
FµνFµν − JµAµ −

1
2α

(∂ ·A)2 (1.130)

where α = 1. The term added to the original Lagrangian is the gauge-fixing term.

107. The photon propagator
Dµν

F (x) = −gµν∆F (x) (1.131)

is defined in the Feynman gauge, a special case of the Lorentz gauge.

108. Propagator in the Lorentz gauge Show that the equation of motion for the photon field in
the Lagrangian

L = −1
4
FµνFµν − JµAµ −

1
2α

(∂ ·A)2 (1.132)

is [
∂2gµα +

(
1
α
− 1
)
∂µ∂α

]
Aα = Jµ (1.133)

and the propagator D must satisfy[
∂2gµα +

(
1
α
− 1
)
∂µ∂α

]
Dαν(x) = gµ

νδ(x). (1.134)

Note that we are using the Lorentz gauge ∂ ·A = 0.

109. Propagator in the Lorentz gauge Show that

Dµν(x) =
∫

d4p

(2π)4

−gµν + (1− α)
pµpν

p2

p2 + iε
e−ip·x (1.135)

=
∫

d4p

(2π)4

[
−gµν + (1− α)

pµpν

p2

]
∆F (p)e−ip·x (1.136)

∆F (p) =
1

p2 + iε
(1.137)

is the solution to the equation[
∂2gµα +

(
1
α
− 1
)
∂µ∂α

]
Dαν(x) = gµ

νδ(x) (1.138)
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110. Propagator in the axial gauge We can choose the axial gauge n ·A = 0. In this case, gauge
fixing term can be written in the form to have our Lagrangian

L = −1
4
FµνFµν − JµAµ −

1
2α

(n ·A)2 . (1.139)

111. Show that

iDµν(x) = i

∫
d4p

(2π)4

[
−gµν +

nµpν + pµnν

n · p
− (n2 + αp2)

pµpν

(n · p)2

]
∆F (p)e−ip·x (1.140)

∆F (p) =
1

p2 + iε
(1.141)

is the gluon propagator in the axial gauge.

112. Massive spin-1 propagator The Lagrangian for a massive spin-1 field is just like that for the
photon except that the particle has nonvanishing mass. We insert the mass term m2

2 B
µBµ

L = −1
4
FµνFµν +

m2

2
BµBµ − JµBµ (1.142)

Fµν = ∂µBν − ∂νBν (1.143)

113. Show that the equation of motion is[
(∂2 +m2)gµν − ∂µ∂ν

]
Bν = Jµ. (1.144)

114. The T matrix for a massive spin-1 field is

iT = i

∫
d4xLint = −i

∫
d4xJµBµ, (1.145)

where the equation of motion is[
(∂2 +m2)gµν − ∂µ∂ν

]
Bν = Jµ. (1.146)

115. We want to find the solution to[
(∂2 +m2)gµα − ∂µ∂α

]
Dαν(x) = gµ

νδ(x). (1.147)

Bµ(x) =
∫
dy4Dµν(x− y)Jν(y) (1.148)

if
[
(∂2 +m2)gµν − ∂µ∂ν

]
Dαν(x) = gµ

νδ(x) (1.149)

Show that

iT = i

∫
d4xLint = −i

∫
d4xJµ(x)Bµ(x) (1.150)

= −i
∫
d4xd4yJµ(x)Dµν(x− y)Jν(y) (1.151)

=
∫
d4xd4y [−iJµ(x)] [iDµν(x− y)] [−iJν(y)] (1.152)
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116. Show that

Dµν(x) =
∫

d4p

(2π)4
−gµν +

pµpν

m2

p2 −m2 + iε
e−ip·x (1.153)

=
∫

d4p

(2π)4

[
−gµν +

pµpν

m2

]
∆F (p)e−ip·x (1.154)

∆F (p) =
1

p2 −m2 + iε
(1.155)

is the solution to the equation[
(∂2 +m2)gµν − ∂µ∂ν

]
Dαν(x) = gµ

νδ(x) (1.156)

Note that p2 6= m2 in general.

1.10 Feynman rules

Momentum-space Feynman rule Let us go back to the T matrix

iT = i

∫
d4xLint (1.157)

=
∫
d4xd4y [−iJ(x)] · [iD(x− y)] · [−iJ(y)] (1.158)

where indices are suppressed for vector particles.

117. Expand the currents as

J(y) =
∫

d4k

(2π)4
J(k)e−ik·y (1.159)

and show that

iT = i

∫
d4xLint (1.160)

=
∫
d4xd4y [−iJ(x)] · [iD(x− y)] · [−iJ(y)] (1.161)

=
∫

d4p

(2π)4
[−iJ(−p)] · [iD(p)] · [−iJ(p)] . (1.162)

118. Consider monochromatic currents

J(x) = J(p1) = N2Ĵ(p1)e−ip1·x (1.163)
J(y) = J(p2) = N2Ĵ(p2)e−ip2·y (1.164)

where N2 came from the normalization of the initial and final states involving the current.
Show that in this case

iT = i

∫
d4xLint = N4(2π)4δ4(p1 + p2)M (1.165)

M =
[
−iĴ(p2)

]
· [iD(p = p1 = −p2)] ·

[
−iĴ(p1)

]
(1.166)

19



119. Show that the propagators for a scalar field and massless/massive vector fields are even functions;

D(x) = D(−x), D(p) = D(−p) (1.167)

Hint: Look into the partial differential equation for the propagator.

120. Show that

|T |2 =
∣∣∣∣i∫ d4xLint

∣∣∣∣2 = N8
[
(2π)4δ4(p1 + p2)

]2 |M|2 (1.168)

= N8 × V T × (2π)4δ4(p1 + p2) |M|2 (1.169)

M =
[
−iĴ(p2)

]
· [iD(p = ±p1 or ± p2)] ·

[
−iĴ(p1)

]
(1.170)

Hint: (2π)4δ4(0) =
∫
dtd3x.

121. Show that the probability of the transition per unit volume per unit time is

P =
|T |2

TV
=

1
V 4
× (2π)4δ4(p1 + p2) |M|2 (1.171)

M =
[
−iĴ(p2)

]
· [iD(p = ±p1 or ± p2)] ·

[
−iĴ(p1)

]
(1.172)

where we used N = 1/
√
V .

122. Cross section Show that the number density of a particle with energy E in V is

2E
V
. (1.173)

123. Show that the flux of the two colliding particle is

F = |va − vb| ×
2Ea

V
× 2Eb

V
(1.174)

= 4 (|pa|Eb + |pb|Ea) /V 2 (1.175)

= 4
√

(pa · pb)2 −m2
am

2
b/V

2 (1.176)

where vi, pi, and Ei are the velocity, momentum and energy of the i−th particle.

124. Show that the number of states in the final state is

dNfinal states = V θ(p0
1)δ(p

2
1 −m2

1)
d4p1

(2π)4
V θ(p0

2)δ(p
2
2 −m2

2)
d4p2

(2π)4

=
V d3p1

2E1(2π)3
V d3p2

2E2(2π)3
(1.177)

if there are two final particles.
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125. Cross section is defined by

dσ =
P

F
× dNfinal states

=
1
V 4

(2π)4δ(pa + pb − p1 − p2)|M|2

× V 2

4
√

(pa · pb)2 −m2
am

2
b

× V d3p1

2E1(2π)3
V d3p2

2E2(2π)3

=
|M|2

4
√

(pa · pb)2 −m2
am

2
b

(2π)4δ(pa + pb − p1 − p2)
d3p1

2E1(2π)3
d3p2

2E2(2π)3
. (1.178)

126. We usually define the phase space dΦ after including the energy-mpmentum delta function

dΦ = (2π)4δ

(
P −

∑
i

pi

)
dNfinal states, (1.179)

where P is the sum of initial momenta pi is the momentum of the i−th final-state particle.

127. We find V dependence exactly cancels. If we redefine the phase space

dΦ = (2π)4δ(pa + pb − p1 − p2)
n∏

i=1

d3pi

2Ei(2π)3
(1.180)

we have

dσ =
|M|2

4
√

(pa · pb)2 −m2
am

2
b

dΦ (1.181)

128. Show that the mass term 1
2m

2AµAµ for a gauge field is NOT invariant under gauge transforma-
tion

Aµ → UAµU † +
i

q
(∂µU)U †, ψ → Uψ, Dµ = ∂µ + iqAµ (1.182)

This guarantees that the gauge field is massless.

129. Show that gauge field is travelling with the speed of light.

1.11 Dirac equation

130. We would like to construct a relativistically covariant theory for a fermion. If we ignore the
spin, the equation must reduce to the Klein-Gordon equation. But we want to have an equation
which has linear time derivative instead of ∂/∂t2, which appears in the Klein-Gordon equation.

i
∂ψ

∂t
= Hψ, H = −iα ·∇ + βm (1.183)
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131. Show that ψ must include the four states

|1〉 = | ↑, E > 0〉, |2〉 = | ↓, E > 0〉, (1.184)
|3〉 = | ↑, E < 0〉, |4〉 = | ↓, E < 0〉 (1.185)

132. Show that H is Hermitian.

133. Show that

〈m|H|n〉 =
√

p2 +m2, if m = n = 1, 2 (1.186)

〈m|H|n〉 = −
√

p2 +m2, if m = n = 3, 4 (1.187)
〈m|H|n〉 = 0, if m 6= n (1.188)∑

n

〈n|H|n〉 = 0 (1.189)

134. Show that α1, α2, α3, and β are Hermitian.

135. If the Dirac equation is equivalent to the Klein-Gordon equation if we neglect the spin dependence
and the sign of the energy, show

H2 = −∇2 +m2 → (∂2 +m2)ψ = 0 (1.190)

136. Show that the condition requires

1
2
(
αiαj + αjαi

)
= δij (1.191)

αiβ + βαi = 0 (1.192)
β2 = 1 (1.193)

137. Show that the conditions (αi)2 = 1 and β2 = 1 require that the eigenvalues for the matirces are
±1.
From now on we will use the notation

{A,B} ≡ AB +BA. (1.194)

138. Let us choose the basis so that the first two components are positive-energy components and
the other two are negative-energy components. By taking p = 0, show that

β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

→ (
1 0
0 −1

)
(1.195)

139. From now on we express any 4× 4 matrix in spinor space in terms of 2× 2 block matrices.

140. Show that β2 = 1.
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141. Let us try arbitrary 4× 4 matrices

αi =
(
ai bi

ci di

)
(1.196)

142. Show that the condition {β, αi} = 0 requires

αi =
(

0 bi

ci 0

)
(1.197)

143. Show that the condition α† = α requires c = b†.

144. Show that the condition {αi, αj} = 2δij requires

bi(bj)† + bj(bi)† = 2δij (1.198)
(bi)†bj + (bj)†bi = 2δij (1.199)

145. Choose the term i = j to find bi is unitary

bi(bi)† = (bi)†bi = 1 (1.200)

The solution is the 3 = 22 − 1 SU(2) generators, Pauli matrices; bi = σi, where Pauli matrices
are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1.201)

Therefore, we have

β =
(

1 0
0 −1

)
, α =

(
0 σ
σ 0

)
(1.202)

146. Show that

σiσj = δij + iεijkσk (1.203)
{σi, σj} = 2δij (1.204)[
σi, σj

]
≡ σiσj − σjσi = +2iεijkσk (1.205)

147. Show that

a · σ b · σ = a · b + ia× b · σ (1.206)

148. Show that

a ·α b ·α = a · b + ia× b ·Σ, Σ =
(

σ 0
0 σ

)
(1.207)
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149. Defining γµ = (γ0,γ) = (β, βα), show that

γ0 =
(

1 0
0 −1

)
, γ =

(
0 σ
−σ 0

)
(1.208)

150. Show that the anticommutation relations for β and αi’s reduce to a single formula

{γµ, γν} = 2gµν (1.209)

where the 4× 4 identity matrix

151. Let us define

/a ≡ γµaµ (1.210)

Show that

/a/b+ /b/a = 2a · b, /a2 = a2 (1.211)

152. Show that
(γµ)† = γµ, (γµ)† = γµ (1.212)

153. Show that
γ0(γµ)†γ0 = γµ, γ0(γµ)†γ0 = γµ (1.213)

Multiply β to the original Dirac equation and find

(iγµ∂µ −m)ψ = 0 (1.214)

Taking the Hermitian adjoint and find

−i∂µψ̄γ
µ − ψ̄m = 0 (1.215)

where ψ̄ = ψ†γ0.

154. Show that the Euler-Lagrange equation for the ψ field in the Lagrangian

L = ψ̄(iγµ∂µ −m)ψ (1.216)

gives the Dirac equation
(iγµ∂µ −m)ψ = 0 (1.217)

155. Show that the Lagrangian can also be written as

L = −i
(
∂µψ̄

)
γµψ −mψ̄ψ (1.218)

if we neglect the surface term.

156. Show that the Euler-Lagrange equation for ψ† field is

−i∂µψ̄γ
µ − ψ̄m = 0 (1.219)
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157. Show that the Lagrangian for the Quantum electrodynamics

L = ψ̄(iγµDµ −m)ψ − 1
4
FµνFµν (1.220)

= −i (Dµψ)† γ0γµψ −mψ̄ψ − 1
4
FµνFµν (1.221)

is invariant under the gauge transformation

ψ → Uψ, Aµ → UAµU † +
i

q
(∂µU)U †, Dµ = ∂µ + iqAµ (1.222)

158. Introducing the covariant derivative Dµ = ∂µ + iqAµ, show that

L = ψ̄(iγµ∂µ −m)ψ − JµAµ (1.223)
Jµ = qψ̄γµψ (1.224)

159. Making use of the Dirac equations

iγµ∂µψ = mψ, − i
(
∂µψ̄

)
γµ = mψ̄ (1.225)

show that the current is conserved

∂µJ
µ = 0 (1.226)

1.12 Spinor

160. Let us consider an electron with momentum pµ and z−compenent spin s, where p0 = E > 0.
Show that the wavefunction ψ(x) = u(p, s)e−ip·x should be normalized to be

ψ†(x)ψ(x) = 2E → u†(p, s)u(p, s′) = 2Eδss′ . (1.227)

161. Using the length contraction, show that the number of electron in the whole space of volume V
is 1.

162. Show that
ū(p)u(p) = 2m (1.228)

using u†(p, s)u(p, s′) = 2mδss′ and Lorentz covariance only.

163. Remind the fact that ψ̄γµψ is transforming like a four vector. Using the result u†(p, s)u(p, s) =
2E and Lorentz covariance only, show that

ū(p)γµu(p) = 2pµ. (1.229)

164. Using spinors for an electron at rest p = (m,0), show that∑
s

u(p, s)ū(p, s) =
(

1 0
0 0

)
=

1
2
(1 + γ0). (1.230)
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165. Using Lorentz covariance, show that∑
s

u(p, s)ū(p, s) =
p/+m

2m
. (1.231)

166. Let us consider a negative-energy electron with momentum −pµ and z−compenent spin s, where
p0 = E > 0. Show that the wavefunction ψ(x) = u(−p, s)e+ip·x should be normalized to be

ψ†(x)ψ(x) = 2E → u†(−p, s)u(−p, s′) = 2Eδss′ . (1.232)

167. Explain why it is not proportional to −2E < 0 but proportional to 2E > 0.

168. Using the length contraction, show that the number of electron in the whole space of volume V
is 1.

169. Show that
ū(−p, s)u(−p, s′) = −2mδss′ (1.233)

using u†(−p, s)u(−p, s′) = 2mδss′ and Lorentz covariance only.

170. Show that ∑
s

u(−p, s)ū(−p, s) =
(

0 0
0 −1

)
=

1
2
(−1 + γ0). (1.234)

171. Using Lorentz covariance, show that∑
s

u(−p, s)ū(−p, s) =
p/−m
2m

. (1.235)

172. Explain why this formula cannot be obtained if we substitute p→ −p to the postive energy case∑
s

u(p, s)ū(p, s) =
p/+m

2m
. (1.236)

173. Following the results for the charged scalar field, we would like to make use of the negative-energy
solution for the positive energy antiparticle with momentum −(−p) = p. Then the wavefunction
for the antiparticle with momentum p can be v̄(p) ≡ ū(−p). Show that

v†(p, s)v(p, s′) = 2Eδss′ , (1.237a)
v̄(p, s)v(p, s′) = −2mδss′ , (1.237b)∑

s

v(p, s)v̄(p, s) =
p/−m
2m

, (1.237c)

where p = (E,p) and E =
√

p2 +m2 > 0.

174. Wavefunction for a positive-energy antiparticle with momentum pµ is

v̄(p)e−ip·x. (1.238)
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175. For the final state, we use
v(p)e+ip·x. (1.239)

176. Using Dirac equation, show that

(p/−m)u(p) = 0, (1.240a)
ū(p)(p/−m) = 0, (1.240b)
(p/+m)v(p) = 0, (1.240c)
v̄(p)(p/+m) = 0. (1.240d)

177. Using the fact that −p→ p in the replacement v(p) = u(−p), explain why the spin-up positive-
energy positron state is expressed in terms of spin-down negative-energy electron state.

178. Formal way to prove this is involving charge-conjuagtion operation with the transformation
matrix

iγ2 =
(

0 iσ2

−iσ2 0

)
=


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , σ2 =
(

0 −i
i 0

)
(1.241)

to the spin-half Lagrangian.

179. Replacing the derivative in Dirac equation by the covariant derivative Dµ = ∂µ + iqAµ, show
that

(i∂/− qA/−m)ψ = 0. (1.242)

Taking complex conjugate, show that

(−i∂/∗ − qA/∗ −m)ψ∗ = 0→ [−γµ∗ (i∂µ + qAµ)−m]ψ∗ = 0, (1.243)

where A∗µ = Aµ.

180. Using the fact

γ0 =
(

1 0
0 −1

)
, γ =

(
0 σ
−σ 0

)
(1.244)

and

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.245)

show that

−γµ∗ =
{
−γµ if µ 6= 2,
+γµ if µ = 2.

(1.246)

181. Show for
U = iγ2, (1.247)
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that

U2 = 1→ U−1 = U † = U, (1.248a)
U−1γµU = −γµ → Uγµ = −γµU if µ 6= 2, (1.248b)
U−1γµU = γµ → Uγµ = γµU if µ = 2, (1.248c)

Therefore,
iγ2 (−γµ∗) = γµ

(
iγ2
)
. (1.249)

182. Show that

iγ2 [−γµ∗ (i∂µ + qAµ)−m]ψ∗ = 0→ [γµ (i∂µ + qAµ)−m]
(
iγ2ψ∗

)
= 0. (1.250)

Therefore, iγ2ψ∗ is the wavefunction for the antiparticle.

1.13 Fermion propagator

183. Show that the Dirac
(iγµ∂µ −m)ψ = J (1.251)

Be careful with the sign in front of the source term on the right-hand side; H = i∂0.

184. Show that the propagator satisfies the equation

(iγµ∂µ −m)SF (x) = Iδ(x) (1.252)

where I is the 4× 4 identity matix in spinor space.

185. Replacing SF (x) = (iγµ∂µ +m) f(x), show that f(x) satisfies the equation(
∂2 +m2

)
f(x) = −δ(x) (1.253)

186. Show that the solution to the above equation is

SF (x) = (iγµ∂µ +m) ∆F (x) (1.254)

187. Show that

SF (x) =
∫

d4p

(2π)4
(/p+m) e−ip·x

p2 −m2 + iε
(1.255)

188. Show that the Dirac
ψ̄
(
−iγµ

←
∂ µ −m

)
= J (1.256)

where A
←
∂ µ≡ ∂µA. Be careful with the sign in front of the source term on the right-hand side;

H = i∂0.

189. Show that the propagator satisfies the equation

S′F (x)
(
−iγµ

←
∂µ −m

)
= Iδ(x) (1.257)

where S′F is the propagator for the ψ̄ field. We will show that S′F (x) 6= SF (x)
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190. Replacing S′F (x) = g(x)
(
−iγµ

←
∂ µ +m

)
, show that g(x) satisfies the equation

(
∂2 +m2

)
g(x) = −δ(x) (1.258)

191. Show that the solution to the above equation is

S′F (x) = ∆F (x)
(
−iγµ

←
∂ µ +m

)
(1.259)

192. Show that

S′F (x) =
∫

d4p

(2π)4
(−/p+m) e−ip·x

p2 −m2 + iε
(1.260)

=
∫

d4p

(2π)4
(/p+m) eip·x

p2 −m2 + iε
= SF (−x) 6= SF (x) (1.261)

(e−ip·x 6= eip·x)

193. Show that SF is not an even function

SF (−x) 6= SF (x), SF (−p) 6= SF (p) (1.262)

194. Show that

ψ(x) =
∫
d4ySF (x− y)J(y) =

∫
d4ySF (x− y)[qγµAµ(y)]ψ(y), (1.263)

ψ̄(x) =
∫
d4yJ(y)SF (y − x) =

∫
d4yψ̄(y)[qγµAµ(y)]SF (y − x) (1.264)

195. Show that the positive-energy component propagates as

SF (x) = θ(x0)Sret.(x) + θ(−x0)Sadv.(x) (1.265)

Sret.(x) = −i
∫

d3p

(2π)3
/p+m

2E
e−ip·x (1.266)

Sadv.(x) = −i
∫

d3p

(2π)3
−/p+m

2E
eip·x (1.267)

where p0 = E =
√
m2 + p2 > 0 From now on we neglect the normalization factor N = 1/

√
V

which does not affect the invariant measurables like cross section.

196. Transition amplitudeM Once we know the transition amplitudeM in momentum space, we
can calculate the cross section of a process.

197. For a scalar-exchange process

M =
[
−iĴ(−p)

] i

p2 −m2 + iε

[
−iĴ(p)

]
(1.268)
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198. For a photon-exchange process

M =
[
−iĴµ(−p)

] i [−gµν + (1− α)
pµpν

p2

]
p2 + iε

[
−iĴν(p)

]
(1.269)

199. For a massive-vector-exchange process

M =
[
−iĴµ

] i [−gµν +
pµpν

m2

]
p2 −m2 + iε

[
−iĴν

]
(1.270)

200. For a fermion-exchange process

M =
[
−iĴ

] i (/p+m)
p2 −m2 + iε

[
−iĴ

]
(1.271)
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Chapter 2

QCD Lagrangian

2.1 QED Summary

1. In the previous chapter we wrote the QED interaction Lagrangian, derived Feynman rules, and
learned how to write the amplitude. QED Lagrangian is given by

L = ψ (iγµDµ −m)ψ − 1
4
FµνF

µν , (2.1)

where the covariant derivative is defined by

Dµ = ∂µ + iqAµ (2.2)

with q = Qe, e =
√

4πα > 0 and Q = −1 for the electron.

2. Wavefunctions for incoming positive-energy electron and positron with momentum p are

e− : u(p)e−ip·x, e+ : v̄(p)e−ip·x. (2.3)

3. Wavefunctions for outgoing positive-energy electron and positron with momentum p are

e− : ū(p)e+ip·x, e+ : v(p)e+ip·x. (2.4)

4. Wavefunction for incoming and outgoing photons with momentum k are

in : εµ(k)e−ik·x, out : εµ∗(k)e+ik·x. (2.5)

5. Propagator for the electron with momentum p is

iSF (p) =
i

p/−m+ iε
. (2.6)

6. Propagator for the photon has various forms depending on the gauge, which does not change
the observables. In the Feynman gauge, the propagator for a photon with momentum k is

iDµν
F (k) =

−igµν

k2 + iε
. (2.7)
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7. The vertex factor can be read from the interaction Lagrangian iLint as

ēAµe = +iqγµ, q = −e. (2.8)

8. Show that once the coupling q is defined by the covariant derivative, the coupling is same
inclusing sign for both electron and positron.

9. We can re-express the field strength tensor in the form

Fµν = ∂µAν − ∂νAµ =
1
iq

[Dµ,Dν ] , Dµ = ∂µ + iqAµ. (2.9)

10. Check the gauge invariance of the Lagrangian.

L = ψ (iγµDµ −m)ψ − 1
4(iq)2

Tr ([Dµ,Dν ] [Dµ,Dν ]) , (2.10)

under the gauge transformation

ψ → Uψ, Dµ → UDµU †. (2.11)

Note that the trace is for the 1× 1 matrix U .

2.2 QCD Lagrangian

11. It is known that there are three (Nc = 3) color states for a quark, which is a spin-half particle.
The color is independent of spin and momentum.

12. We can extend QED to treat this new degree of freedom by introducing gauge fields mediating
the color force between any two quarks. This can be done by declaring the spinor field ψ has
the wavefunction of the form

ψquark = ψquark(spin)× ψquark(color). (2.12)

13. We can introduce the gauge transform for the quark just like that for the electron as

ψ → Uψ, Dµ → UDµU †. (2.13)

Note that the matrix U is now a 3× 3 matrix and acts only on the color wavefunction.

Uψquark = ψquark(spin)× Uψquark(color). (2.14)

14. We know that U must be unitary. Show that the matrix U can be parametrized by

U = e−i
PN2

c−1
a=1 T aαa

, (2.15)

where αa is real and T a’s are the SU(Nc) generators.

15. Show that T a is traceless and Hermitian.
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16. Show that the number of generators for the SU(Nc) is N2
c − 1.

17. The covariant derivative can be generalized to the SU(Nc) as

Dµ = ∂µ + igsA
µ, (2.16)

where Aµ is the matrix-valued gluon field

Aµ = Aµ
aT

a. (2.17)

Note that gs is the strong coupling. Therefore, gluons can have N2
c −1 = 8 different color states.

18. We can imagine the QCD Lagrangian should be of the form

L = ψ (iγµDµ −m)ψ − 1
4
Gµν

a Ga
µν , (2.18)

because there are 8 gluons. Note that Gµν
a is the field strength tensor for the gluon with color

a, which is a QCD analogy of the photon field strength tensor.

19. Let us check the gauge invarince of the Lagrangian. We can use the fact

Tr
(
T aT b

)
=

1
2
δab, (2.19)

to derive
−1

4
Gµν

a Ga
µν = −1

2
Tr (GµνGµν) . (2.20)

Again, Gµν is a matrix
Gµν = Gµν

a T a. (2.21)

20. Show that the covariant derivative transforms as

Dµ → UDµU †, DµDν → UDµDνU †, (2.22)

under the gauge transformation

ψ → Uψ, Aµ → UAµU † − 1
igs

(∂µU)U †. (2.23)

21. Show that the QCD Lagrangian

L = ψ (iγµDµ −m)ψ − 1
2
Tr (GµνGµν) (2.24)

is invariant under the gauge transformation. We have constructed the QCD Lagrangian, which
is gauge invariant and Lorentz invariant.

22. In the previous section, we have written the QED Lagrangian as the following.

L = ψ (iγµDµ −m)ψ − 1
4
Gµν

a Ga
µν . (2.25)

Show that

Gµν =
1
igs

[Dµ,Dν ] = ∂µAν − ∂νAµ + igs [Aµ, Aν ] . (2.26a)
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23. Show that
Gµν

a = 2Tr (GµνT a) = ∂µAν
a − ∂νAµ

a + 2igsA
µ
bA

ν
cTr

(
T a[T b, T c]

)
. (2.27)

24. Using the identity [T b, T c] = ifabcT a, show that

Gµν
a = ∂µAν

a − ∂νAµ
a − gsf

abcAµ
bA

ν
c . (2.28)

25. Show that there exists three-gluon coupling in QCD.

26. Show that there exists four-gluon coupling in QCD.

2.3 Gauge Fixing in QED

27. We learned that we need gauge-fixing term such as

Lgauge-fixing = − 1
2α

(∂µA
µ)2 (2.29)

in the Lorentz gauge in order to derive the photon propagator.

28. Show in QED that the gauge transform changes the photon field as

Aµ + ∂µχ, (2.30)

if we choose
U = e−iqχ. (2.31)

29. Show that the gauge condition ∂µA
µ = 0 transforms as

∂µA
µ + ∂µ∂

µχ = 0. (2.32)

There appears unpleasant term ∂µ∂
µχ.

30. Show that
∂µ∂

µχ = 0, (2.33)

if we want to keep the gauge condition ∂µA
µ = 0. Under the transform, gauge field is shifted to

another gauge field which still satisfies the condition ∂µA
µ = 0.

31. Once we introduce a gauge-fixing term, our gauge transform cannot be completely general. The
transform must keep the gauge condition in order for the Lagrangian to be gauge invariant. The
gauge invariance is valid only in the group of gauges satisfying the same gauge condition.

32. Show that
∂µ∂

µχ = 0, (2.34)

is the equation of motion for the Lagrangian

L = ∂µχ†∂µχ. (2.35)

We can include this term into the Lagrangian in order to correct the gauge invariance of ∂µA
µ.

33. Show that inclusion of this scalar field does not make any physical contribution in reality because
it does not have any interaction term with any other fields.
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2.4 Gauge-Fixing and Ghost Terms in QCD

34. We can introduce the same kind of gauge-fixing term like that of the Lorentz gauge in QED. We
can try the QCD analogy of this

Lgauge-fixing = − 1
2α

(∂µA
µ
a)2 . (2.36)

Note that there are N2
c − 1 conditions ∂µA

µ
a = 0 for a =1, 2, · · · , N2

c − 1.

35. We learned that in QCD the gauge transform changes the gluon field as

Aµ → UAµU † − 1
igs

(∂µU)U †, (2.37)

where Aµ = Aµ
aT a. Let us find how each gluon field Aµ

a transforms in QCD.

36. It is convenient to choose the parametrization as

U = e−igsαaT a
. (2.38)

Note that αa should be real to preserve U unitary. Expanding the matrix U in powers of α upto
corrections of order α2, show that

Aµ → (1− igsα
cT c)Aµ

xT
x (1 + igsα

cT c) + ∂µαaT
a (2.39a)

= (Aµ
a + ∂µαa)T a + igsA

µ
x[T x, T c]αc (2.39b)

= (Aµ
a + ∂µαa)T a + igsA

µ
x (ifaxc)αcT

a. (2.39c)

Therefore, Aµ
a transforms as

Aµ
a → Aµ

a + [∂µδac + igsA
µ
x (ifaxc)]αc. (2.40)

37. Let us introduce a matrix in the adjoint representation

(tx)ac ≡ if
axc. (2.41)

Show that
Aµ

a → Aµ
a + [∂µδac + igsA

µ
x (tx)ac]αc. = Aµ

a + D̃µ
acαc, (2.42)

where the covariant derivative D̃ac in the adjoint representation has the same form

D̃µ
ac ≡ ∂µδac − gsA

µ
xf

axc = ∂µδac + igsÃ
µ
ac, Ãµ

ac ≡ Aµ
x (tx)ac = Aµ

x (ifaxc) . (2.43)

as that in the fundamental represenation.

38. The problem is resolved if we include the ghost term to the Lagrangian. One can find detailed
discussion in most field theory text book such as Peskin.

Lghost = (∂µη̄a) D̃µ
acηc = (∂µη̄a) (∂µδac − gsf

axcAµ
x) ηc. (2.44)

39. Ghost η is a complex scalar field. However, it behaves like a fermion in statistical sense. We will
find later.
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2.5 SU(Nc) algebra summary

SU(Nc) Generator T a, a = 1, · · · , N2
c − 1

[T a, T b] = ifabcT c (2.45)
(tb)ac = ifabc (2.46)

Fij = F aT a
ij ← F a = 2 Tr(FT a), Tr(T a, T b) =

1
2
δab (2.47)

faxyf bxy = Ncδ
ab

= −(ta)xy(tb)xy = (ta)xy(tb)yx = Tr(tatb) (2.48)

2.6 QCD Feynman rules

40. we are ready to derive QCD Feynman rules from the QCD Lagrangian.

L = ψ (iγµDµ −m)ψ − 1
4
(
∂µAν

a − ∂νAµ
a − gsf

abcAµ
bA

ν
c

)(
∂µA

a
ν − ∂νA

a
µ − gsf

apqAp
µA

q
ν

)
. (2.49)

where the covariant derivatives are defined by

Dµ
ij = δij∂

µ + igsA
µ
aT

a
ij (2.50)

Dµ
ac = δab∂

µ + igsA
µ
b (tb)ac = δab∂

µ − gsG
µ
b f

abc ← (tb)ac = ifabc (2.51)

where indices i, j, k, · · · and a, b, c, · · · denote color indices for quark and gluon, respectively.

41. Let us recall the followings. Field strength tensor from fundamental representation

Gµν = − i

gs
[Dµ,Dν ] = − i

gs
[∂µ + igsA

µ
aTa, ∂

ν + igsA
ν
bTb]

= ∂µAν
aTa − ∂νAµ

aTa + igsA
µ
xA

ν
y [Tx, Ty]

= ∂µAν
aT

a − ∂νAµ
aT

a − gsA
µ
xA

ν
yfxyaT

a ← [T a, T b] = ifabcT c (2.52)
Gµν

a = 2Tr(GµνT a) = ∂µAν
a − ∂νAµ

a − gsfabcA
µ
bA

ν
c (2.53)

(tb)ac = ifabc (2.54)

42. Derivative

∂µ → −ipµ(incoming line), ∂µ → +ipµ(outgoing line) (2.55)

43. Vertex

+i L (2.56)

44. Wavefunctions for incoming positive-energy quark and antiquark with momentum p are

q : u(p)e−ip·x, q̄ : v̄(p)e−ip·x, (2.57)

where we have suppressed the color wavefunction. The color wavefunction is of the form

ci, c
†
icj = δij , i, i = 1, 2, 3. (2.58)
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45. Wavefunctions for outgoing positive-energy quark and antiquark with momentum p are

q : ū(p)e+ip·x, q̄ : v(p)e+ip·x. (2.59)

46. Wavefunction for incoming and outgoing gluons with momentum k are

in : εµ(k)e−ik·x, out : εµ∗(k)e+ik·x. (2.60)

The color wavefunction for the gluon with color index a is

ca, c
†
acb = δab, i, i = 1, 2, ·, 8. (2.61)

47. Propagator for the quark with momentum p with initial and final color indices i and j is

iSF (p)× δji =
iδji

p/−m+ iε
. (2.62)

The factor shows the color is preserved δji.

48. Propagator for the photon has various forms depending on the gauge, which does not change
the observables. In the Feynman gauge, the propagator for a photon with momentum k is

iDµν
F (k)× δba =

−igµνδba
k2 + iε

. (2.63)

49. The q̄jA
µ
aqi vertex factor can be read from the interaction Lagrangian iLint as

q̄jA
µ
aqi : −igsT

a
jiγ

µ. (2.64)

50. Coupling gs is universal for any quark.

2.6.1 Gluon Vertices

51. From the QCD Lagrangian

L = −1
4
(∂µAν

a − ∂νAµ
a)2 − 1

2α
(∂ ·Aa)2

+
1
2
gsf

abc(∂µAν
a − ∂νAµ

a)Ab
νA

c
ν −

1
4
g2
sf

xabfxcdAµ
aA

ν
bA

c
µA

d
ν , (2.65)

derive the following Feynman rules.

52. gluon propagrator

g : − i
gµν − λ−1

λ pµpν/p2

p2 + iε
(2.66)

53. Three-gluon vertex gµ1
c1 (p1 : in)− gµ2

c2 (p2 : in)− gµ3
c3 (p3 : in) is

ggg : − gsf
c1c2c3 ((p1 − p2)µ3gµ1µ2 + (p2 − p3)µ1gµ2µ3 + (p3 − p1)µ2gµ3µ1) . (2.67)
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54. Solution:

iLggg = i

[
−1

4
Ga

µνG
µν
a

]
ggg

= igfabcAµ
bA

ν
c∂µA

a
ν (2.68)

= g
∑

perm.{1,2,3}

fabc

∫
d4p1d

4p2d
4p3e

−i(p1+p2+p3)·x(p1 ·Aa
2)(A

b
1 ·Ac

3) (2.69)

= −g
∑

perm.{1,2,3}

fabc

∫
d4p1d

4p2d
4p3e

−i(p1+p2+p3)·x

×
[
−(p1 ·Aa

2)(A
b
1 ·Ac

3) + (p3 ·Aa
2)(A

b
1 ·Ac

3) · · ·
]

=
∫
d4p1d

4p2d
4p3e

−i(p1+p2+p3)·xAa
µ1

(p1)Ab
µ2

(p2)Ac
µ3

(p3)

×(−gfabc) · [gµ1µ2(p1 − p2)µ3 + gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2 ] . (2.70)

(abc) = (c1c2c3) If we choose the momentum direction into the vertex(annihilation at x), mo-
mentum dependence is e−ik·x style and derivative can be replaced by −ik in momentum space.

55. Following the above way, derive the four-gluon vertex gµ1
c1 (p1 : in) − gµ2

c2 (p2 : in) − gµ3
c3 (p3 :

in)− gµ4
c4 (p4 : in) is

gggg : − ig2
s

[
+f c1c2xf c3c4x (gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)
−f c1c3xf c2c4x (gµ1µ4gµ2µ3 − gµ1µ2gµ3µ4)
+f c1c4xf c2c3x (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)

]
. (2.71)

56. Show the Bose symmetry of three- and four-gluon vertices explicitly.

2.6.2 Ghost Vertices

57. From the ghost term

L = −δacηa∂
2ηc + gsfabcηa∂µA

µ
b ηc, (2.72)

derive the following rules

58. ghost(p) propagator

gh :
i

p2 + iε
(2.73)

59. ghost(pfout, cf )− g(µ, cg)− ghost(piin, color = ci)

ghf − g − ghi : + pµ
fgsf

cf cgci (2.74)
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Chapter 3

SU(N)

In this chapter, we review the properties of the special unitary group, SU(N), which is useful in
calculating color factors in various QCD processes.

3.1 Generators and structure constants

1. Consider a transform N ×N matrix U which transforms a matrix O and a vector ψ in complex
field as

ψ → ψ′ = Uψ and O → O′ = UOU−1. (3.1)

Show that ψ†ψ is invariant under this transformation

ψ†Oψ → ψ†U †UOU−1Uψ = ψ†Oψ, (3.2)

if the transformation operator is unitary:

U−1 = U †. (3.3)

When the transform is infinitesimal, U may be expressed as

U = e−iεaTa = 1− iεaTa, (3.4)

where εa’s are the infinitesimal real parameters and Ta’s are the generators of the transformation.

2. Show that iT a must be antihermitian.

3. Show that T a must be hermitian.

4. Show that T a must be traceless. Since U is unitary, Ta’s are Hermitian. If we restrict detU = +1
as the case of the identity transformation, the Ta matrices are restricted to be traceless as

det U = εi1i2,...,iNU1i1U2i2 ... UNiN

= εi1i2,...,iN (δ1i1 − iεaT 1i1
a )(δ2i2 − iεaT 2i2

a ) ... (δNiN − iεaT
1iN
a )

= ε12,...,N − iεa
(
εi1i2,...,iN (T 1i1

a δ1i1 ... δNiN + ...+ δ1i1 ... δN−1iN−1
T 1i1

a )
)

= 1− iεa
(
εi12,...,NT

1i1
a + ...ε12,...,iNT

NiN
a

)
= 1− iεaTrTa → TrTa = 0 ← detU = +1. (3.5)
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5. Show that there are N2
c −1 free real parameters for εa. Consider how many Ta’s are independent.

Since a transformation matrix U is an N×N complex matrix, there are 2N2 parameters at first.
Hermitian constraint discards N2 parameters and traceless condition does one more parameter
so that we now have N2 − 1 independent Ta’s.

6. If N2 = 2, the problem is the same as that for a spin-1/2 particle. Show that the generators for
the SU(2) are Pauli sigma matrices. Are there N2

c − 1 = 3 generators?

7. Consider a commutator −i [Ta, Tb]. It is a traceless and hermitian operator. Therefore it can be
expressed as a linear combination of the generators as

[Ta, Tb] = ifabcTc, (3.6)

where fabc is the ab anti-symmetric evidently from the definition using commutator.

8. Show that fabc is totally anti-symmetric.

fabc = f bca = f cab

= −f bac = −f cba = −facb =
1
3!

(
fabc + f bca + f cab − f bac − f cba − facb

)
. (3.7a)

You can prove it if you use the relations

Tr[AB] = Tr[BA]→ Tr[ABC] = Tr[BCA] = Tr[CAB], (3.8)

which are valid for any matrices.

9. Since the trace of any two generator product is symmetric under the exchange of the color
indices,

Tr[T aT b] = Tr[T bT a] =
1
2

(
Tr[T aT b] + Tr[T bT a]

)
, (3.9)

Tr[T aT b] is proportional to δab and the normalization can be chosen freely. Conventionally λ is
set to 1/2.

Tr [TaTb] =
1
2
δab. (3.10)

10. We can infer that the antisymmetric term in TaTb is proportional to ifabcTc from the commutation
relation. Therefore we can express the product of any two generators as

TaTb =
1
2

[(Afabc +Bdabc)Tc + CδabI] , (3.11)

where dabc is ab-symmetric and A, B and C are to be determined as follows. Directly from the
commutation relation, we can find A = i and from the normalization condition, Tr[TaTb] = δab/2,
we can find C = 1/N . Setting B = 1 also, we get

TaTb =
1
2

[
(ifabc + dabc)Tc +

1
N
δabI

]
,

{Ta, Tb} = dabcTc +
1
N
δabI. (3.12)
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11. Then we find that dabc is fully symmetric as

Tr [{Ta, Tb}Tc] = dabdTr [TdTc] =
1
2
dabc ← ab − symmetric

= Tr [TaTbTc + TbTaTc] = Tr [TbTcTa + TbTaTc]
= Tr [Tb {Ta, Tc}] ← ac − symmetric. (3.13)

12. And these are the useful relations

Tr[T aT b] =
1
2
δab, (3.14)

Tr[T aT bT c] =
1
4
[dabc + ifabc], (3.15)

dabc = 2Tr[{T a, T b}T c], (3.16)
fabc = −2iTr[[T a, T b]T c], (3.17)

Tr[T aT bT cT d] =
1
4

[
1
N
δabδcd +

1
2
(dabe + ifabe)(dcde + if cde)

]
. (3.18)

3.2 Derivation of completeness relation

Any N ×N traceless and hermitian matrix A can be expressed in the linear combination of the
generators as

A =
N2−1∑
a=1

αaT a, (3.19)

where αa’s are real. There are N2 degrees of freedom in arbitrary N × N hermitian matrices
and there are N2 − 1 generators, T a’s. Therefore, we need one more N × N matrix to form a
basis of the hermitian matrix other than the N2 − 1 generators, T a’s. Since identity matrix is
an hermitian and it is independent of the generators, we can form a basis by adding the identity
matrix.

13. Show that any N × N Hermitian matrix is expressed in a linear combination of the identity
matrix and SU(N) generators.

H = α0I +
N2−1∑
a=1

αaT a, (3.20)

where αi for i =0, 1, · · · , N2 − 1 are all real. Then we can obtain useful relation from this
completeness condition. By choosing the normalization

Tr [TaTb] =
1
2
δab, (3.21)

we obtain the explicit values of the coefficients as

TrH = α0N and Tr[T aH] =
1
2
αa. (3.22)
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14. Rewriting the hermitian matrix H

H =
1
N

Tr[H] I + 2
N2−1∑
a=1

Tr[T aH]T a, (3.23)

in matrix representation, show that

Hµν =
1
N
Hααδµν + 2

N2−1∑
a=1

T a
µνT

a
αβHβα,

Hβα(δµβδνα) = Hβα

 1
N
δαβδµν + 2

N2−1∑
a=1

T a
µνT

a
αβ

 . (3.24)

15. Using the fact that Hµν is an arbitrary complex number for any µ > ν and an arbitrary real
number for any µ = ν, prove the completeness relation

N2−1∑
a=1

T a
µνT

a
αβ =

1
2

(
δµβδνα −

1
N
δµνδαβ

)
. (3.25)

With this relation, we can calculate any color factor involving SU(N) gauge theory.

3.3 Useful trace formulas

We can derive various trace formulas and relations among the structure constants which are very
useful in practical calculations concerning perturbative QCD. In this section, we derive these
practically useful relations in detail, by using the results shown in previous sections.

From now on, we use summation convention, where any two repeated indices are assumed to be
summed over color indices.

16. By using the completeness relation, we can show that the sum of squared generators is propor-
tional to the identity matrix asN2−1∑

a=1

T aT a


µν

=
N2−1∑
a=1

T a
µαT

a
αν =

1
2

(
δµνδαα −

1
N
δµαδαν

)

=
1
2

(
Nδµν −

1
N
δµν

)
,

→
N2−1∑
a=1

T aT a =
N2 − 1

2N
I. (3.26)

For SU(N = 3),

CF =
N2 − 1

2N
=

4
3
. (3.27)

The color factor appears in the quark wavefunction renormalization factor.
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17. When we calcualte gluon-loop corrections to ferimion-gluon-fermion vertices, we need to evaluate
the matrix such as ∑

a

T aT bT a. (3.28)

Using the completeness relation to re-order the matrix product and using the formula∑
a

T aT a =
N2 − 1

2N
I, (3.29)

show that

T aT aT b =
N2 − 1

2N
T b, (3.30)

T aT bT a = − 1
2N

T b, (3.31)

T aT aT bT b =
(N2 − 1)2

4N2
I, (3.32)

T aT bT aT b = −N
2 − 1
4N2

I, (3.33)

T aT bT bT a =
(N2 − 1)2

4N2
I. (3.34)

18. We can derive the following trace formulas using the same method used above. Here are the
SU(N) trace formulas up to 4 pairs of indices

Tr[T aT b] =
1
2
δab, (3.35)

Tr[T aT aT b] = 0, (3.36)

Tr[T aT b]Tr[T aT c] =
1
4
δbc, (3.37)

Tr[T aT aT bT c] =
N2 − 1

4N
δbc, (3.38)

Tr[T aT bT aT c] = − 1
4N

δbc, (3.39)

Tr[T aT bT c]Tr[T aT bT d] = − 1
4N

δcd, (3.40)

Tr[T aT bT cT aT bT d] =
N2 + 1
8N2

δcd, (3.41)

Tr[T aT bT c]Tr[T bT aT d] =
N2 − 2

8N
δcd, (3.42)

Tr[T aT bT cT bT aT d] =
1

8N2
δcd, (3.43)

Tr[T aT aT bT bT cT d] =
(N2 − 1)2

8N2
δcd, (3.44)

Tr[T aT aT bT cT bT d] = −N
2 − 1
8N2

δcd, (3.45)

Tr[T aT bT aT bT cT d] = −N
2 − 1
8N2

δcd. (3.46)
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3.4 Adjoint representation

In this section we investigate the properties of the structure constant fabc’s and symmetric dabc’s.
And we will look into the adjoint representation which is made up of the structure constant fabc

itself.

Compare the above identity with the one driven in previous section,

T aT b =
1
2

[
1
N
δab I + (dabc + ifabc)T c

]
. (3.47)

19. If we multiply δab and sum over color indices, then we get the properties of the structure constant
and symmetric dabc as

faab = 0 and daab = 0. (3.48)

20. If we use Eq.(3.47) two times we get

T aT bT c =
1

4N
[dabc + ifabc] I

+
1
2

[
1
N
δabδce +

1
2
(dabd + ifabd)(ddce + ifdce)

]
T e. (3.49)

Let us consider triple product T aT bT c. By using Eq. (3.26) we get

T aT aT b =
N2 − 1

2N
T b and T aT bT a = − 1

2N
T b

−→ T a[T a, T b] =
N

2
T b and T a{T a, T b} =

N2 − 2
2N

T b. (3.50)

Comparing the result by using the Eqs.(3.6), (3.12)

T a[T a, T b] = T aifabcT c =
i

2
fabc[T a, T c] =

i

2
fabcifaceT e =

1
2
facbfaceT e,

T a{T a, T b} = T a

(
dabcT c +

1
N
δabI

)
=

1
2
dabc{T a, T c}+

1
N
T b

=
1
2
dabcdaceT e +

1
N
T b, (3.51)

show that

fabcfabd = Nδcd (3.52a)
fabcdabd = 0 (3.52b)

dabcdabd =
N2 − 4
N

δcd. (3.52c)

21. With the identities and Eqs. (3.16) and (3.17) we obtain other relations

dabcfabd = 0,

dabcdabc =
(N2 − 1)(N2 − 4)

N
,

fabcfabc = N(N2 − 1). (3.53)
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22. The structure constants fabc themselves define adjoint representation

F b
ac ≡ ifabc. (3.54)

23. Show that F b’s are traceless, hermitian, and anti-symmetric (N2 − 1)× (N2 − 1) matrices.

24. By using the Jacobi identity, show that

[[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b] = 0,
ifabd[T d, T c] + if bcd[T d, T a] + if cad[T d, T b] = 0,
ifabdifdceT e + if bcdifdaeT e + if cadifdbeT e = 0,

(−ifabd)(−ifdce) + (−if bcd)(−ifdae) + (−if cad)(−ifdbe) = 0,
(−ifabd)(−ifdce)− (−ifadc)(−ifebd) = ifaed(−ifdbc),

(F aF e)bc − (F eF a)bc = ifaedF d
bc

→ [F a, F b] = ifabcF c. (3.55)

25. Defining the fully symmetric dabc likewise(Da
bc = dabc), we get

[{T a, T b}, T c] + [{T b, T c}, T a] + [{T c, T a}, T b] = 0,
dabd[T d, T c] + dbcd[T d, T a] + dcad[T d, T b] = 0,
dabdifdceT e + dbcdifdaeT e + dcadifdbeT e = 0,

dabdifedc − dadcifebd = −dbcdifdae,

−(DaF e)bc + (F eDa)bc = ifeadDd
bc,

→ [F a, Db] = ifabcDc. (3.56)

26. Formulas related to the structure constants can be rewritten in terms of adjoint representation
as

faab = 0 → TrF b = 0, (3.57)
daab = 0 → TrDb = 0, (3.58)

fabcfabd = (−if cab)(−ifdba) = Tr[F cF d] = Nδcd, (3.59)

fabcfabd = (−ifacb)(−ifabd) =
N2−1∑
a=1

(F aF a)cd = N Icd, (3.60)

dabcfabd = 0 → Tr[DcF d] = 0, (3.61)

dabcfabd = 0 →
N2−1∑
a=1

(DaF a)cd = 0cd, (3.62)

dabcdabd = dcabddba = Tr[DcDd] =
N2 − 4
N

δcd, (3.63)

dabcdabd = dacbdabd =
N2−1∑
a=1

(DaDa)cd =
N2 − 4
N

Icd. (3.64)
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Now we summarize the results concerning the two representations. Regardless of the two repre-
sentations

T (R) δab = Tr [TaTb] and C2(R) I =
N2−1∑
a=1

T (R)
a T (R)

a , (3.65)

where I is the identity matrix in the representation R and the label R is given as

T (F )
a = Ta and T (A)

a = Fa. (3.66)

We can set the normalization of the generators by setting the value of T (R). Standard normal-
izations are given as

T (R) =
1
2

and T (R) = N. (3.67)

Then the values of C2(R) are fixed as

C2(R) =
N2 − 1

2N
and C2(R) = N. (3.68)

3.5 SU(3) Clebsch-Gordan coefficients

27. As the meson formed from qq into singlet and octet in flavor SU(3), the color state formed by
Q and Q with color i and j form a color singlet and a color octet states as

3⊗ 3̄ = 1⊕ 8. (3.69)

Obviously the singlet state is the identity matrix and octet states are the eight generators of
SU(3) in the fundamental representation up to normalization as

〈3i; 3j|1〉 = N1δij and 〈3i; 3j|8a〉 = N8T
a
ij . (3.70)

The octet coefficient is proportional to the physical vertex ; gluon with color a goes to a color i
quark and a color j antiquark. One should be cautious not to confuse the order of indices i and
j in above equations.

Normalizing the nine states as

〈1|1〉 =
∑
ij

〈1|3i; 3j〉〈3i; 3j|1〉

= |N1|2
∑
ij

δjiδij

= |N1|2Tr[II] = 3|N1|2 = 1, (3.71)

〈8a|8a〉 =
∑
ij

〈1|3i; 3j〉〈3i; 3j|1〉 (not sum over index a)

= |N8|2
∑
ij

T a∗
ij T

a
ij

= |N8|2
∑
ij

T a
jiT

a
ij

= |N8|2Tr[T aT a] =
1
2
|N8|2 = 1. (3.72)
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If we perform the same derivation for the case of SU(N), then we get

〈3i; 3j|1〉 =
1√
N
δij and 〈3i; 3j|8a〉 =

√
2T a

ij , (3.73)

provided that the generators of the fundamental representation are normalized as

Tr[T aT b] =
1
2
δab. (3.74)

28. To find the color factor for singlet and octet in this case, we use this kind of method: Since any
product of color matrices are expressed as

Tn ≡ T a1T a2T a3 · · · ·T an = A(a1, a2, . . . , an) +Ba(a1, a2, . . . , an)T a (3.75)

A(a1, a2, . . . , an) =
1
N

Tr(Tn) (3.76)

Ba(a1, a2, . . . , an) = 2Tr(T aTn) (3.77)

Then the total color factor is

CT ≡ TrTnT
†
n = A(a1, a2, . . . , an)A∗(a1, a2, . . . , an)Tr(I)

+ Ba(a1, a2, . . . , an)B∗b(a1, a2, . . . , an)Tr(T aT b)
= A(a1, a2, . . . , an)A∗(a1, a2, . . . , an)N

+ Ba(a1, a2, . . . , an)B∗b(a1, a2, . . . , an)
1
2
δab

= NA(a1, a2, . . . , an)A∗(a1, a2, . . . , an)

+
1
2
Ba(a1, a2, . . . , an)B∗a(a1, a2, . . . , an) (3.78)

And the singlet and octet factors are

C1 = A(a1, a2, . . . , an)A(a1, a2, . . . , an)

=
1
N2

Tr(Tn)Tr(Tn) (3.79)

C8δ
ab = Ba(a1, a2, . . . , an)Bb(a1, a2, . . . , an)

=
δab

N2 − 1
Ba(a1, a2, . . . , an)Ba(a1, a2, . . . , an) (3.80)

C8 =
1

N2 − 1
Ba(a1, a2, . . . , an)Ba(a1, a2, . . . , an)

=
4

N2 − 1
Tr(T aTn)Tr(T aTn) (3.81)

Therefore there is a relation among the total color factor, singlet and octet color factor

CT = NC1 +
1
2
(N2 − 1)C8 (3.82)
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3.6 Examples

29. In calculations of QCD amplitudes such as gg → gg, we have to calculate color factors such as

fabcfaxyfdbxfdcz, (3.83)

which is very involved.

fabcfaxyfdbxfdcz = +
1
2
N2δyz (3.84)

dabcfaxyfdbxfdcz = 0 (3.85)

dabcdaxyfdbxfdcz = +
1
2
(N2 − 4)δyz (3.86)

dabcfaxyddbxfdcz = −1
2
(N2 − 4)δyz (3.87)

dabcdaxyddbxfdcz = 0 (3.88)

dabcdaxyddbxddcz = +
1

2N2
(N2 − 4)(N2 − 12)δyz (3.89)

where the last formula is not derived directly from the relations given above, instead, with

44 × Tr(T aT bT c)Tr(T aT xT y)Tr(T dT bT x)Tr(T dT cT z)
= (dabc + ifabc)(daxy + ifaxy)(ddbx + ifdbx)(ddcz + ifdcz) (3.90)

and the remaining formulas. And the relation is invariant under cyclic rotations such as

AabcBaxyCdbxDdcz = BabcCaxyDdbxAdcz

= CabcDaxyAdbxBdcz

= DabcAaxyBdbxCdcz (3.91)

30. The completeness relation is the most powerful tool in calculating color factors. You are ad-
vised to transform any color factors into the fundamental representation first. Then using the
completeness relation to reorder the color matrices so that you can express the color factor as a
linear combination of products of color factors made of

Tr[T aT b] =
1
2
δab. (3.92)

Then the remaining calculations are products of

δaa = N2 − 1 and/or δii = N. (3.93)
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Chapter 4

Tree-Level Calcualtion

4.1 e+e− → µ+µ−

1. Neglecting masses, show that

σ(e+e− → µ+µ−) =
4πα2

3s
. (4.1)

4.2 e+e− → q + q̄

2. Neglecting masses, show that

σ(e+e− → qq̄) = Nc × e2q × σ(e+e− → µ+µ−), (4.2)

where eq is the fractional charge of the quark.
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