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1 Introduction

In this note, we give a brief survey of supergravity theories in ten and eleven dimensions.

The focus is on the theories which have the maximal number of supersymmetries, that is,

32 supersymmetries.

Before going into the supergravity theory, we first investigate the possible types of spinors

in various dimensions. This lead us to have information as to what the minimal spinor is

for describing the supersymmetry and the field contents of a given supergravity theory.

In the eleven dimensional theory, the notion of Killing spinor is introduced. We then

obtain the ten dimensional type IIA supergravity by compactifying the eleven dimensional

theory on a circle. This gives the basic concept of Kaluza-Klein compactification. As a

theory not obtainable directly from the eleven dimensional theory, the ten dimensional type

IIB supergravity is finally considered. We present an interesting structure of it, which is the

SL(2,R) symmetry.

Much detail for the theories considered here and the other many important aspects of

them may be found in the following nice review articles: Townsend [hep-th/9712004]; West

[hep-th/9811101]; de Wit [hep-th/0212245], Bilal and Metzger [hep-th/0307152].

We would like to note that the purpose of this note is not the construction of supergravity

theories themselves. Actually, almost all the interesting theories have been constructed

and even the collection of important papers has been already given by Salam and Sezgin

[Supergravities in Diverse Dimensions, (1989)].

2 Spinors in various dimensions

We consider spinors in arbitrary d space-time dimension with d− time-like and d+ space-like

directions, that is, d = d− + d+. Since the properties of spinors are determined by those of

Dirac gamma matrices, we first present the necessary facts about Dirac gamma matrices.

The references for this section are as follows: Kugo and Townsend [Nucl. Phys. B221

(1983) 357]; Sohnius [Phys. Rep. 128 (1985) 39]; West [hep-th/9811101]; Van Proeyen

[hep-th/9910030]; Polchinski’s book.

2.1 Gamma matrices

The Dirac gamma matrices Γa (a = 1, . . . , d) are defined to be irreducible representations

of the Clifford algebra,

{Γa, Γb} = 2ηab . (2.1)
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The metric ηab is the flat metric in Rd−,d+ , where d−(d+) is the number of time-like (space-

like) directions.

ηab = diag(

d−︷ ︸︸ ︷− · · ·−
d+︷ ︸︸ ︷

+ · · ·+ ) ,

d = d+ + d− , ∆ = d+ − d− , (2.2)

where ∆ is defined for later convenience.

It follows from (2.1) that the matrices

Σab = − i

2
Γab (2.3)

represent the algebra of SO(d−, d+)

Σab =Σ(Jab)

[Jab, J cd] =− i(ηbcJad + ηadJ bc − ηacJ bd − ηadJ bc) . (2.4)

To investigate the properties of Dirac gamma matrices, we begin with a possible rep-

resentation of the Clifford algebra for the Euclidean space (d− = 0) in terms of Pauli σ

matrices.

Γ1 =σ1 ⊗ 1⊗ 1⊗ . . .

Γ2 =σ2 ⊗ 1⊗ 1⊗ . . .

Γ3 =σ3 ⊗ σ1 ⊗ 1⊗ . . .

Γ4 =σ3 ⊗ σ2 ⊗ 1⊗ . . .

Γ5 =σ3 ⊗ σ3 ⊗ σ1 ⊗ . . .

... (2.5)

The dimension of a representation is 2d/2 for even d. For odd d, it is 2(d−1)/2, one example

of which is the case of d = 5, where the last σ1 in Γ5 is unnecessary.

All the gamma matrices above are Hermitian, since σ matrices are so. If d− 6= 0,

we should multiply the first d− matrices by i. For example, Γ1 = iσ1 ⊗ 1... for the

Minkowskian case. This process makes the gamma matrices in the time-like directions to be

anti-Hermitian. The Hermiticity property of the above gamma matrices is then expressed

as

Γa† = Γa . (2.6)
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One important fact is that the gamma matrices can be used to make a complete set of

even dimensional matrices. To be more precise, let us consider even d dimension and define

anti-symmetric products of gamma matrices Γ(n) with n = 0, 1, . . . , d;

Γ(n) = Γa1a2···an ≡ Γ[a1Γa2 · · ·Γan] , (2.7)

which are orthogonal in the sense that Tr(Γ(n)Γ(m)) ∝ δnm. Then {Γ(n)} provides a complete

set of 2d/2 × 2d/2 matrices. The last element Γ(d) which is used in considering Weyl spinors

is denoted here simply as Γ̄:

Γ̄ ≡ Γ(d) = Γ1Γ2 · · ·Γd , Γ̄2 = (−1)−∆/2 , {Γ̄, Γa} = 0 . (2.8)

An interesting fact is that, in even dimensions, the matrices Γ(n) and Γ(d−n) are related by

Γ̄ as

Γa1···an =
1

(d− n)!
εa1···anan+1···ad

(−1)d−Γ̄Γad···an+1 , (2.9)

where ε12···d = 1.

Since {Γ̄, Γa} = 0, Γ̄ in even d dimension can be used as Γd+1 in odd d + 1 dimension by

setting Γd+1 = i∆/2Γ̄. Then the matrix Γ̄ in odd dimension given by product of all gamma

matrices is just the identity matrix multiplied by ±1 or ±i. This leads to the fact that, in

odd d dimension, a set {Γ(n)} with n = 0, 1, . . . , (d−1)/2 forms the basis of 2(d−1)/2×2(d−1)/2

matrices.

2.2 Equivalence relations

The Dirac gamma matrices such as Eq. (2.5) is not the unique representation of the Clifford

algebra (2.1). One can obtain another set of gamma matrices satisfying the Clifford algebra

by means of similarity transformation,

Γ′a = SΓaS−1 , (2.10)

where S is a non-singular matrix. In this case, two sets of gamma matrices, {Γa} and {Γ′a},
are said to be in the same equivalence class. For the equivalence relations, there are two

useful theorems, which are given below without proofs.

• For a given even d dimension with a given signature of the metric, all irreducible

representations of Clifford algebra are 2d/2 × 2d/2 dimensional and are equivalent to

one another. That is, for any two representations {Γa} and {Γ′a}, there is a non-

singular matrix S such that (2.10) holds.
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• For a given odd d dimension with a given signature of the metric, there are two

equivalence classes of irreducible representations in terms of 2(d−1)/2×2(d−1)/2 matrices.

In particular, if {Γa} is in one equivalence class then {−Γa} is in the other.

We note that, for a given representation Γ ≡ {Γa}, all the following are also representa-

tions of the Clifford algebra.

Γ,−Γ, Γ†,−Γ†, Γ∗,−Γ∗, ΓT ,−ΓT . (2.11)

According to the first theorem above, these are all equivalent in even dimensions. Thus

there must exist interwiners between them. We let A, B, and C the interwiners connecting

Γ with ±Γ†, ±Γ∗, and ±ΓT , respectively. The interwiner connecting Γ and −Γ is simply

Γ̄. The second theorem implies that, in odd dimensions, the above eight representations

are grouped into two equivalence classes, each of which contains four representations. For

example, if A exists connecting Γ and −Γ†, then there is no non-singular matrix connecting

Γ and Γ†.

In view of the similarity transformation between representations, the Hermiticiy property

of the gamma matrices, (2.6), can be expressed as

Γa† = (−1)d−AΓaA−1 , A = Γ1Γ2 · · ·Γd− . (2.12)

The interwiner in this case is for Γ† or −Γ†. As an example, for d− = 0, A = 1 is the

interwiner connecting Γ and Γ† both in even and odd dimensions. The interwiner for −Γ†

is given by Γ̄ in even dimensions but it does not exist in odd dimensions.

The interwiner B, which is crucial in the discussion of Majorana spinor, will be considered

later.

The matrix C, which is usually called the charge conjugation matrix, connects Γ and

±ΓT as follows.

ΓaT = ηCΓaC−1 , η = ±1 . (2.13)

With the help of Schur’s lemma, we get from this relation the information about the charge

conjugation matrix as

CT = εC , ε = ±1 . (2.14)

We should determine which values of η and ε are allowed in a given d+ and d−. In order to

do that, we use the completeness of {Γ(n)} matrices as alluded to in the last subsection and

consider the symmetry property of the matrices CΓ(n). We first note that

(
CΓ(n)

)T
= εηn(−1)n(n−1)/2CΓ(n) . (2.15)
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d (mod 8) S A ε η
0 0,3 1,2 + −

0,1 2,3 + +
1 0,1 2,3 + +
2 0,1 2,3 + +

1,2 0,3 − −
3 1,2 0,3 − −
4 1,2 0,3 − −

2,3 0,1 − +
5 2,3 0,1 − +
6 2,3 0,1 − +

0,3 1,2 + −
7 0,3 1,2 + −

Table 1: Symmetric (S) and anti-symmetric (A) properties of CΓ(n) with n mod 4 in dimen-
sion d mod 8. The quantities ε and η are those appearing in CT = εC and ΓaT = ηCΓaC−1.

This is periodic under the shift n → n + 4, and thus the number of symmetric or anti-

symmetric matrices can be computed by using the following formulae.

(
d

0

)
+

(
d

4

)
+ · · · = 2d−2 + 2d/2−1 cos

πd

4
,

(
d

1

)
+

(
d

5

)
+ · · · = 2d−2 + 2d/2−1 sin

πd

4
,

(
d

2

)
+

(
d

6

)
+ · · · = 2d−2 − 2d/2−1 cos

πd

4
,

(
d

3

)
+

(
d

7

)
+ · · · = 2d−2 − 2d/2−1 sin

πd

4
. (2.16)

On the other hand, we know that there are

2[d/2]−1(2[d/2] ± 1) (2.17)

symmetric (+) and anti-symmetric (−) matrices, where [n] denotes the integer part of n.

Now, by equating the results from two counting methods for the number of symmetric or

anti-symmetric matrices, we get possible values of η and ε, which are listed in table 1.

2.3 Irreducible spinors

The Dirac spinor is the one that transforms in the spinor representation of SO(d−, d+),

Eq. (2.4). Although the Dirac gamma matrices form an irreducible representation of the

Clifford algebra, the spinor representation of SO(d−, d+) which they define may be reducible
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in some situations. Thus the Dirac spinor is reducible in those cases. Basically, there are

two ways of reducing the Dirac spinor while keeping manifest SO(d−, d+) covariance. They

are provided by the chirality projection, which is valid only in even dimensions, and the

reality condition.

Weyl spinor: In even d dimensions, there exists the matrix Γ̄, whose eigenvalues are

from Eq. (2.8)

±
√

β , (2.18)

where β ≡ (−1)−∆/2 = ±1. There are equal number of +
√

β and −√β eigenvalues, since

TrΓ̄ = 0.1 We now define the projection operators

P± =
1± Γ̄/

√
β

2
. (2.19)

They commute with the SO(d−, d+) generators Σab because {Γ̄, Γa} = 0, and thus Σab
± ≡

P±Σab are also representations of the algebra (2.4), called chiral representations. Weyl or

chiral spinors are the spinors transforming in chiral representations and are defined by

ψ± = P±ψ , (2.20)

where ψ+ (ψ−) is said to have positive (negative) chirality.

As a remark, we note that, from the dependence of β on ∆, the eigenvalues of Γ̄ are ±1

in ∆ = 0 mod 4 and ±i in ∆ = 2 mod 4. This implies that chiral spinors in ∆ = 2 mod 4

change their chiralities under the complex conjugation, while those in ∆ = 0 mod 4 do not.

Majorana spinor: The components of a Dirac spinor are in general complex numbers.

Even if we start with a component-wise real spinor, it becomes complex after SO(d−, d+)

transformation generated by Σab.

In some dimensions, however, it is possible to impose a reality condition, which is stated

as

ψ∗ = Xψ , (2.21)

for some matrix X. For the consistency ψ∗∗ = ψ, X should satisfy

X∗X = 1 . (2.22)

1According to the representation of Clifford algebra, (2.5), Γ̄ = σ3⊗σ3⊗· · · , which is obviously traceless.
Since the similarity transformation does not change this property, TrΓ̄ = 0 in any other gamma matrix
representation.
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The dimensions allowing the reality condition are determined by requiring that the

condition is consistent under the SO(d−, d+) transformations. We first consider the reality

properties of the Dirac gamma matrices. Combining Eqs. (2.12), (2.13), and (2.14), it is

given by

Γa∗ = η(−1)d−BΓaB−1 , B = A−1T C . (2.23)

We note that if the Hermiticity of the gamma matrices, (2.6), is assumed then all of the

interwiners A, B, and C have to be unitary. This leads us to obtain

B∗B = εηd−(−1)
1
2
d−(d−−1) . (2.24)

If the SO(d−, d+) transformation is applied on both sides of the reality condition, (2.21),

by using δψ = 1
4
ωabΓ

abψ with infinitesimal parameter ωab, we now obtain

BΓabB−1X = XΓab . (2.25)

This implies that

X = αB (2.26)

with some constant α. From Eqs. (2.22) and (2.24), we see that the consistency of the

reality condition leads to |α| = 1 and B∗B = 1.

The possible dimensions satisfying B∗B = 1 are determined from the table 1 and Eq.

(2.24) as follows.

∆ = 0, 1, 7 mod 8

∆ = 2 mod 8 with η(−1)d/2 = −1

∆ = 6 mod 8 with η(−1)d/2 = +1 . (2.27)

In these cases, there can be spinors satisfying the reality condition (2.21), and such spinors

are called Majorana or real spinors. We note that the condition |α| = 1 is actually irrelevant

in the discussion of Majorana spinors and is used to make, for example, the fermion bilinears

to be Hermitian in the action construction.

For the values of ∆ other than those of (2.27), B∗B = −1. In this case, if we have

even number of spinors ψi with i = 1, . . . , 2n, there is actually an another possibility, the

symplectic Majorana condition

ψi∗ = BΩijψ
j . (2.28)
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The matrix Ω is antisymmetric and satisfies ΩΩ∗ = −1. A typical form of Ω is given by( 0 1n×n

−1n×n 0

)
.

Majorana-Weyl spinor: Finally, one may ask whether there are chiral spinors which

also satisfy the reality condition, that is,

ψ∗± = Xψ± . (2.29)

A bit of manipulation for the left hand side gives

ψ∗± =
1

2
(1± Γ̄∗/

√
β
∗
)ψ∗

=
1

2
(1±BΓ̄B−1/

√
β
∗
)Xψ

= X
1

2
(1± Γ̄/

√
β
∗
)ψ . (2.30)

This show that the reality condition satisfies if
√

β
∗

=
√

β. The condition for β is thus

β = +1 , (2.31)

which means ∆ = 0 mod 4. From the dimensions allowing Majorana spinors (2.27), we now

see that the condition (2.29) is satisfied when

∆ = 0 mod 8 . (2.32)

The spinors satisfying the condition (2.29) are called Majorana-Weyl spinors.

The other possibilities ∆ = 4 mod 8 for β = +1 correspond to the symplectic Majorana-

Weyl spinors, which exist when

∆ = 4 mod 8 . (2.33)

Until now, we have investigated the reductions of Dirac spinors which are consistent

with the SO(d−, d+) transformations. Based on the results, we give tables 2 and 3 which

show the possible types of spinors in various space-time dimensions with Minkowkian and

Euclidean signature respectively.

3 Local supersymmetry and gravity

In this section, we consider the local supersymmetry and consequences following it.

The theories that are invariant under the local supersymmetry transformation are called

the supergravity theories, which contain the gravity. This seems to imply that the local
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d dΓ dmin W M MW
1 1 1 real
2 2 1 self real real
3 2 2 real
4 4 4 complex real−

5 4 8 symplectic
6 8 8 self symplectic symplectic
7 8 16 symplectic
8 16 16 complex real+

9 16 16 real
10 32 16 self real real
11 32 32 real
12 64 64 complex real−

Table 2: Spinors in Minkowskian space-time. d: dimension of space. dΓ: dimension of Dirac
gamma matrix. dmin: real dimension of minimal spinor. W: Weyl, M: Majorana, MW:
Majorana-Weyl. The signs of real± are those of η in ΓT

a = ηCΓaC
−1. The table continues

with d mod 8. One should notice that the symplectic case exists only when the number of
spinors is 2n with n ≥ 1.

d dΓ dmin W M MW
1 1 1 real
2 2 2 complex real+

3 2 4 symplectic
4 4 4 self symplectic symplectic
5 4 8 symplectic
6 8 8 complex real−

7 8 8 real
8 16 8 self real real
9 16 16 real
10 32 32 complex real+

11 32 64 symplectic
12 64 64 self symplectic symplectic

Table 3: Spinors in Euclidean space-time. The labelling of columns is the same with that
of table 2.
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supersymmetry requires the inclusion of gravity sector in a locally supersymmetric the-

ory. To see this clearly, let us consider the schematic form of the supersymmetry algebra

{Q,Q} = P , where Q is the supercharge and P the momentum. If we take the commutator

of two successive supersymmetry transformations [δ1, δ2] where δ1,2 = ε1,2Q with the trans-

formation parameters ε1,2, the supersymmetry algebra tells us that the translation with an

amount proportional to ε1ε2 is generated. Since the ε’s are space-time dependent in the

case of local supersymmetry, the translation generated by two supersymmetry transforma-

tions is also space-time dependent. We note that this is nothing but the general coordinate

transformation. Therefore we can conclude that the inclusion of gravity is an inevitable

consequence of the local supersymmetry.

The gravity is the theory describing the dynamics of spin-2 particle, that is , the graviton.

The graviton is in the bosonic sector of the so-called gravity multiplet of the supersymmetry

algebra, which is the massless multiplet with maximal helicity 2, |λmax| = 2. Usually,

there is no need to take into account the gravity multiplet if one does not consider the

local supersymmetry. In some cases, however, it is contained in a theory automatically,

and we should consider supergravity theories. This situation depends on the number of

supersymmetry, the total number of real components of supercharges, which we let nQ. By

a simple arithmetic, we see that |λmax| ≥ nQ

16
, for massless multiplets. Thus, if nQ > 16,

|λmax| ≥ 3
2
, so that the theory should contain Rarita-Schwinger fields. By the way, an

interacting supersymmetric theory of this type should contain gravity, that is, the graviton.

Therefore, the gravity multiplet is included in a theory automatically if nQ > 16. If nQ >

32, the multiplets with the helicity λ > 2 begin to enter, and hence are beyond of our

concern here. This implies that nQ = 32 is the maximum number of supersymmetries that

supergravity theories can have. If we look at the table 2, we see that the bound nQ = 32

restricts the space-time dimension to eleven.

In this note, we are concerned about the maximally supersymmetric case, nQ = 32. The

eleven dimensional supergravity is first considered. After that, we go down to ten dimensions

and consider two maximally supersymmetric supergravity theories.

4 Eleven dimensional supergravity

The d = 11 N = 1 supergravity action was constructed first by Cremmer, Julia, and Scherk

[Phys. Lett. B76 (1978) 409]. The superspace formulation was given by Cremmer and

Ferrara [Phys. Lett. B91 (1980) 61].

We begin with quoting the viewpoint about the d = 11 supergravity in mid 80’s.
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Eleven-dimensional supergravity remains an enigma. It is hard to believe that its existence

is just an accident, but it is difficult at the present time to state a compelling conjecture for

what its role may be in the scheme of things. ...

Green, Schwarz, and Witten

... before the appearance of M-theory. From mid 90’s, the supergravity has been recognized

as the low energy limit of the big theory, the M-theory. Then one may ask what the M-theory

is. Unfortunately, at present, we do not yet have the complete answer. Story continues ....

Fist of all, we work out the massless representation of the supersymmetry algebra, that is,

the graviton supermultiplet. Since N = 1, we have one supercharge which is the Majorana

spinor with 32 real components as one finds in the table 2. The supersymmetry algebra is2

{Qα, Qβ} = −2(ΓMC−1)αβPM , (4.1)

where C may be chosen as Γ0. Here we have ignored the terms of central charges on the

right hand side corresponding to the presence of membranes (M2-brane) and fivebranes

(M5-brane), since they are not our concern.

If we simply take the momentum of the massless state to be PM = (−1,−1, 0, . . . , 0),

the algebra becomes

{Qα, Qβ} = 2(1 + Γ01)αβ . (4.2)

Since Γ01 squares to the identity, its eigenvalues are ±1, and, since it is traceless, precisely

half are +1 and half −1. Then, after the diagonalization, we see that 16 components of

supercharge give non-vanishing anti-commutators. These 16 components can be split into

8 creation operators and 8 annihilation operators. Therefore, by acting creation operators

on the state which is annihilated by all annihilation operators, we get 28 = 256 states, of

which 128 are bosons and 128 fermions:

256 = 128B + 128F . (4.3)

This is the number of on-shell physical states in the graviton supermultiplet of d = 11

supergravity. The contents of the graviton supermultiplet are the graviton GMN , 3-from

gauge field CMNP , and gravitino ΨA
M . The number of physical states for each field gives the

above numbers as

128B = 44 (GMN) + 84 (CMNP ) ,

128F = 128 (ΨA
M) . (4.4)

2The notation for the indices are as follows: M, N, . . . (A, B, . . . ) are the curved (flat tangent) space-time
indices taking values of 0, 1, . . . , 9, 11, while α, β, . . . are the spinor indices taking values of 1, 2, . . . , 32.
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The dynamics of the fields in the graviton supermultiplet is described by the d = 11

N = 1 supergravity action,

S = SB + SF , (4.5)

where SB (SF ) is the bosonic (fermionic) part. The bosonic part is given by

SB =
1

2κ2
11

∫
d11x

√
−G

(
R− 1

2 · 4!
G2

(4) +
1

(12)4
εM1...M11CM1M2M3GM4...M7GM8...M11 ,

)

(4.6)

where R is the Ricci scalar, GMNPQ = 4∂[MCNPQ], G2
(4) = GMNPQGMNPQ, and 2κ2

11 is the

11-dimensional gravitational constant defined by using the 11-dimensional Planck length lp

as

2κ2
11 ≡ (2π)8l9p . (4.7)

We note that the Chern-Simons term in the action is required for the invariance of the full

action S under the local supersymmetry transformation.

The introduction to some conventions and notations adopted in this note is in order.

For p-form gauge field A(p), its field strength F(p+1) is

FN1N2...Np+1 = (p + 1)∂[N1AN2...Np+1] , (4.8)

the squaring of which is given by F 2
(p+1) = FN1N2...Np+1F

N1N2...Np+1 . The ε-tensor in d-

dimensional Minkowskian space-time is defined as

ε01···(d−1) =
1√−G

ε01···(d−1) , (4.9)

where G is the determinant of metric tensor and the Levi-Civita ε-symbol is taken to have

its value as ε01···(d−1) = −ε01···(d−1) = 1.

The fermionic part of the action S is

SF =
1

2κ2
11

∫
d11x

√
−G

[
− Ψ̄MΓMNP DNΨP

− 1

96

(
Ψ̄RΓMNPQRSΨS + 12Ψ̄MΓNP ΨQ

)
GMNPQ + · · ·

]
, (4.10)

where dots denote the four fermion terms and the covariant derivative is given by

DM = ∂M +
1

4
ΩM

ABΓAB , (4.11)
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with the spin connection ΩM
AB. The four fermion terms, which are of course required for

the local supersymmety invariance, lead to the contact interactions. Because of the nature

of contact interaction and the non-renormalizability of the four fermion terms in the usual

sense of quantum field theory, they are activated at ultra high energy. However, since the

supergravity is at present regarded as the low energy effective theory of some mother theory,

that is, M or string theory, we should not consider the supergravity at high energy where

the four fermion interactions begin to give significant effects.

The 11-dimensional supergravity action given by Eqs. (4.5), (4.6), and (4.10) is invariant

under the following local supersymmetry transformations.

δEA
M =

1

2
ε̄ΓAΨM ,

δCMNP = −3

2
ε̄Γ[MNΨP ] ,

δΨM = DMε +
1

288
(ΓM

NPQR − 8δN
MΓPQR)εGNPQR + · · · , (4.12)

where ε(XM) is the infinitesimal local supersymmetry parameter and dots in third line

denote the terms quadratic in gravitino field.

Let us now discuss about the supersymmetric background or vacuum by using the above

supersymmetry transformation rules with the parameter ε. Firstly, let |Ω〉 be the vacuum

state of the theory. The expectation values of bosonic fields for the vacuum give the back-

ground field configuration. If it is annihilated by some fraction of supercharge Q, e.g. half of

32 components, it is said to be supersymmetric and such fraction of supercharge, generate

unbroken supersymmetries. How do we find such unbroken supersymmetries? The unbro-

ken supercharge Q annihilating |Ω〉 implies that 〈Ω|{Q, φ}|Ω〉 = 0 for all field operators φ.

This will be so if φ is a bosonic operator, since {Q, φ} is fermionic. On the other hand, if φ

is fermionic, we have non-trivial equation 〈Ω|δφ|Ω〉 = 0 for the supersymmetry parameter

ε, where δφ = {Q, φ} has been used. At the classical level, 〈Ω|δφ|Ω〉 coincides with δφ.

Therefore, finding a supersymmetry transformation such that δφ = 0 for fermionic fields φ

leads to the finding of a unbroken supersymmetry. In the present case, we have δΨM = 0,

that is,
(

DM +
1

288
(ΓM

NPQR − 8δN
MΓPQR)GNPQR

)
ε = 0 . (4.13)

This is called the Killing spinor equation. The simplest example is the vacuum given by the

11-dimensional Minkowskian space-time; GMN = ηMN , C(3) = 0, and ΨM = 0. It is easy to

see that all the 32 supersymmetries are unbroken and hence the Minkowskian space-time is

maximally supersymmetric.
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5 Type IIA supergravity

The d = 10 IIA supergravity has nonchiral N = (1, 1) supersymmetry, whose algebra is

given by

{Q+
α , Q+

β } = −2(P+ΓµC−1)αβPµ , {Q−
α , Q−

β } = −2(P−ΓµC−1)αβPµ . (5.1)

Q+
α ∈ 16 of SO(1, 9) , Q−

α ∈ 16′ of SO(1, 9)

Although α ranges from 1 to 32, the number of independent components are 16. For a proper

choice of momentum as that of Eq. (4.2), the massless multiplets for the superalgebras are

obtained as

{Q+, Q+} −→ 8v + 8c ,

{Q−, Q−} −→ 8v + 8s , (5.2)

where 8v, 8s, and 8c are the eight dimensional representations of the transverse SO(8).

Then the total number of states in the IIA supergravity multiplet is (8 + 8) × (8 + 8) =

256 = 128B + 128F , which is decomposed as follows.

128B = 1 + 35v + 28 + 8v + 56v

φ gµν B(2) A(1) A(3)

(5.3)

128F = 8s + 8c + 56s + 56c

λ+ λ− ψ+
µ ψ−µ

where the type IIA field corresponding to each representation has been shown and the signs

of superscripts for the fermionic fields denote the SO(1, 9) chirality.

The action describing the dynamics of type IIA supergravity fields have been constructed

by Huq and Namazie [Class. Quantum Grav. 2 (1985) 293, 597 (E)], Giani and Pernici

[Phys. Rev. D 30 (1984) 325], and Campbell and West [Nucl. Phys. B243 (1984) 112].

From now on, we obtain the d = 10 type IIA supergravity action from the Kaluza-Klein

circle compactification of the d = 11 supergravity described in Eqs. (4.5), (4.6), and (4.10).

We only consider the bosonic part.

Let us assume that x11 is the isometry direction, which is compactified on a circle of

coordinate radius R11, and d = 11 supergravity fields are independent on that direction.

Then, after introducing convention for indices

M = (µ, 1̃1) , A = (a, 11) ,

µ (a) : d = 10 curved (flat tangent) space-time index ,
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the d = 11 metric may be written as

ds2
11 =GMNdxMdxN

=G̃µνdxµdxν + e2σ(dx11 + Aµdxµ)2 , (5.4)

where

G̃µν = Gµν − e2σAµ .

We note that Aµ is actually an Abelian gauge field whose transformation law originates

from the diffeomorphism δx11 = ξ11. By taking ξ ≡ ξ11, the gauge transformation is

δAµ = −∂µξ . (5.5)

As for the 3-form gauge field, it is related to the d = 10 quantities as

CMNP = (Cµνρ, Cµν1̃1) = (Aµνρ, Bµν)

⇒ GMNPQ = (Gµνρσ, Gµνρ1̃1) = (Fµνρσ, Hµνρ) . (5.6)

If we plug Eqs. (5.4) and (5.6) into the bosonic part of the d = 11 supergravity action,

we get

SB =
1

2κ2
10

∫
d10x

√
−G̃

[
eσR̃− 1

2 · 3!
e−σH2

(3) + · · ·
]

(5.7)

where κ2
10 = κ2

11/2πR11 and we have kept the most important terms while the remaining

terms are denoted as dots. This is not of the usual canonical form.

There are two canonical forms for IIA supergravity. One is the form in the string frame

and another in the Einstein frame. In order to have the canonical forms, we perform the

Weyl transformation,

G̃µν = e2Λgµν ,

R̃ = e−2Λ [R− 2(d− 1)∇µ∂µΛ− (d− 1)(d− 2)gµν∂µΛ∂νΛ] , (5.8)

where Λ is taken as

Λ = aσ (5.9)

with some constant a. Under this transformation, SB becomes

SB =
1

2κ2
10

∫
d10x

√−g

[
e(4a+1)σ

(
R− 9a∇µ∂µσ − 18a2gµν∂µσ∂νσ

)

− 1

2 · 3!
e(2a−1)σH2

(3) + · · ·
]

. (5.10)
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5.1 String frame

In the string frame, there is an overall factor e−2φ in the Lagrangian for the NS-NS sector

fields, that is, dilaton, graviton, and 2-form gauge field. It turns our that the choice a = −1

with the identification

σ =
2

3
φ (5.11)

corresponds to the IIA supergravity in the string frame.

Following the terminology from string theory, the bosonic part of IIA supergravity action

in the string frame is given by

SB
IIA = SNS-NS + SR-R + SCS , (5.12)

where each term on the right hand side is

SNS-NS =
1

2κ2
10

∫
d10x

√−ge−2φ

(
R + 4∂µφ∂µφ− 1

2 · 3!
H2

(3)

)
,

SR-R = − 1

2κ2
10

∫
d10x

√−g

(
1

2 · 2!
F 2

(2) +
1

2 · 4!
F̃ 2

(4)

)
,

SCS = − 1

4κ2
10

∫
B(2) ∧ F(4) ∧ F(4) . (5.13)

The field strength F̃(4) is defined by

F̃µνρσ = 4∂[µAνρσ] − 4A[µHνρσ] (5.14)

which is invariant under the U(1) transformation (5.5).

5.2 Einstein frame

If we choose a = −1/4 with the identification (5.11), we get the IIA supergravity action in

the Einstein frame. On the other hand, we can go to the Einstein frame from the string

frame via the relation

gµν (string) = eφ/2gµν (Einstein) . (5.15)

Then the resulting action is the sum of the following actions.

SNS-NS =
1

2κ2
10

∫
d10x

√−g

(
R− 1

2
∂µφ∂µφ− 1

2 · 3!
e−φH2

(3)

)
,

SR-R = − 1

2κ2
10

∫
d10x

√−g

(
1

2 · 2!
e

3
2
φF 2

(2) +
1

2 · 4!
e

1
2
φF̃ 2

(4)

)
,

SCS = − 1

4κ2
10

∫
B(2) ∧ F(4) ∧ F(4) . (5.16)
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6 Type IIB supergravity

The d = 10 IIB supergravity has chiral N = (2, 0) supersymmetry, whose algebra is

{QA
α , QB

β } = −2δAB(P+ΓµC−1)αβPµ . (6.1)

The two supercharges QA
α with A = 1, 2 have the same chirality (positive chirality).

As in the case of IIA supergravity, the number of states in the massless IIB supergravity

multiplet is 256 = 128B + 128F . However, the decomposition of the states is different:

128B = 1 + 35v + 28 + 1 + 28 + 35c

φ gµν B(2) A(0) A(2) A+
(4)

(6.2)

128F = 8c + 8c + 56s + 56s

λ1 λ2 ψ1
µ ψ2

µ

where we attach the superscripts 1, 2 to the fermionic fields to distinguish the fermions with

the same chirality and A+
(4) means that its field strength is self-dual.

Important progresses in the study of IIB supergravity were made by Schwarz [Nucl.

Phys. B226 (1983) 269], Howe and West [Nucl. Phys. B238 (1984) 181], and Schwarz and

West [Phys. Lett. B126 (1983) 301]. Due to the presence of self-dual 5-form field strength,

it is hard to construct the convariant action for such a field. However, one can formulate

the IIB supergravity on-shell, that is, the covariant equations of motion.

One interesting property of IIB supergravity is the presence of SL(2,R) symmetry, in

which we are interested here. Although there is no covariant action, we may ignore the

problem of self-dual field strength in the investigation of SL(2,R) and use the action. In

the string frame, the bosonic part of the IIB supergravity action is

SB
IIB = SNS-NS + SR-R + SCS , (6.3)

where the terms on the right hand side are given by

SNS-NS =
1

2κ2
10

∫
d10x

√−ge−2φ

(
R + 4∂µφ∂µφ− 1

2 · 3!
H2

(3)

)
,

SR-R =
1

2κ2
10

∫
d10x

√−g

(
−1

2
F 2

(1) −
1

2 · 3!
F̃ 2

(3) −
1

4 · 5!
F̃ 2

(5)

)
,

SCS = − 1

4κ2
10

∫
A+

(4) ∧H(3) ∧ F(3) . (6.4)

The field strengths with tilde are defined as

F̃(3) = F(3) − A(0) ∧H(3) ,

F̃(5) = F(5) − 1

2
A(2) ∧H(3) +

1

2
B(2) ∧ F(3) . (6.5)
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To see the SL(2,R) symmetry clearly, it is better to go to the Einstein frame. By using

(5.15), we can get the IIB supergravity action in the Einstein frame as follows:

SIIB =
1

2κ2
(10

∫
d10x

√−g

(
R− 1

2
(∂φ)2 − 1

2
e2φ(∂A)2 − 1

2 · 3!
e−φH2

(3)

− 1

2 · 3!
eφF̃ 2

(3) −
1

4 · 5!
F̃ 2

(5)

)
− 1

4κ2
(10)

∫
A+

(4) ∧H(3) ∧ F(3) , (6.6)

where we set

A ≡ A(0) .

Now we see that there seems to be some relation between φ and A (also between H(3) and

F̃(3)). Indeed it is so. To see this, we define following quantities.

τ = A + ie−φ ,

(6.7)

Mij =
1

Imτ

( |τ |2 −Reτ
−Reτ 1

)
, F i

(3) =

(
H(3)

F(3)

)

The action then becomes

SIIB =
1

2κ2

∫
d10x

√−g

(
R− ∂µτ̄ ∂µτ

2(Imτ)2
− 1

2 · 3!
MijF

i
(3) · F i

(3) −
1

4 · 5!
F̃ 2

(5)

)

− 1

8κ2
εij

∫
A+

(4) ∧ F i
(3) ∧ F j

(3) . (6.8)

We consider the following SL(2,R) transformation

τ ′ =
aτ + b

cτ + d
(6.9)

where a, b, c, and d are real numbers and satisfy ad−bc = 1. This leads to the transformation

rule for the matrix M as

M′ = (Λ−1)TMΛ−1 , Λ =

(
d c
b a

)
. (6.10)

Then the IIB supergravity is invariant under the following tranformation rules in addition

to that of τ .

F ′i
(3) = Λi

jF
j
(3) ,

g′µν = gµν , F̃ ′
(5) = F̃(5) . (6.11)

As a final remark, we note that the SL(2,R) symmetry is crucial in the study of non-

perturbative dynamics of type IIB string theory, which is unfortunately beyond of the scope

of this note.

Bon voyage!

18


