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1 Introduction & the supersymmetry algebra

At least at a non-technical level, all of us have heard that supersymmetry (called susy for
short), is a symmetry that mixes bosonic and fermionic degrees of freedom in a dynamical
system. We will make this notion more precise during the course of these lectures; however
before getting into that let us spend a few minutes to recall the motivation for the exercise
we are going to undertake.

Of course the most obvious reason is that there have been some progress in understanding
the dynamics of supersymmetric gauge theories. Any symmetry gives us a useful handle in
analysing the behaviour of a physical system, and supersymmetry is no exception. Indeed it
turns out that supersymmetry imposes powerful constraints in the way physical system can
behave and consequently makes such system accessible beyond the domain of perturbation
theory.

A more physical motivation — although admittedly biased by the presently held paradigm
in high energy physics — is that the interactions of elementary particles well below the
Planck scale is described by a local quantum field theory that is approximately super-
symmetric. Also it is a non-abelian gauge theory. This fact has been established for the
electroweak sector of the standard model for a long time; while a more recent evidence for
the role of gauge theory in strong interactions is the announcement of evidence in favour of
quark-gluon plasma. Special behaviour of supersymmetric gauge theories could hopefully
therefore be directly reflected in the physics of elementary particles.

Finally, by the end of the decade, we shall know whether supersymmetry operates in
nature, at least in the most expected way.

We shall not say anything more about applications of supersymmetric gauge theories
in elementary particle physics. Some aspects will be discussed in the other lectures of this
school.

A word about references. For the formalism of supersymmetry I have drawn heavily
from the review article by Lykken[1] and the classic text by Wess and Bagger[2]. In the
later parts dealing with applications and the more modern developments I have used the
reviews by Peskin[3] and Seiberg[4]. All these contain much more than what I shall be able
to present in nine lectures and could be used for further reading. Throughout these lectures
we shall use Weyl spinors. It is also possible to formulate supersymmetry using Majorana
spinors, as is done e.g. in Refs.[5, 6]. Lastly I have not attempted to be cite the original
references to the literature in many cases. Some of the reviews in the bibliography may be
consulted for this purpose.

Let us begin with supersymmetry.
The idea was first proposed by Gol’fand and Likhtman[7] in 1971. Somehow it did

not gain popularity, nor was it widely known perhaps, until the 1974 paper of Wess and
Zumino[8]. These authors constructed a field theory action that has a remarkable new kind
of symmetry: it is invariant under infinitesimal variation of bosons (respectively fermions)
that is proportional to fermions (bosons). Schematically

δξφB ∼ ξψF ,

δξψF ∼ ξ∂φB,

where, ξ is an infinitesimal fermionic parameter. That ξ is fermionic follows from matching
spin and statistics of two sides of the above equations. Also we see from the first equation
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that ξ has mass dimension −1/2, which brings in the derivative of the bosonic field φB in
the second. Thus already from dimensional analysis we see that such a symmetry must mix
with spacetime symmetries — translation in the above. So supersymmetry is a ‘spacetime
symmetry’ as opposed to internal symmetries that do not mix with spacetime transforma-
tions. Indeed Gol’fand and Likhtman begin by asking whether it is possible to extend the
algebra of spacetime symmetries such that the Poincaré algebra (consisting of spacetime
translations, rotations and boosts), is a proper subalgebra of the extended symmetry.

Before we go ahead and start writing equations, let us remind ourselves about transfor-
mation properties of spinors, i.e. how they are defined, since they will play a crucial role
in our consideration. This will also help set up our notation and convention.

The world we live in has three space and one time directions. It is (locally) flat1 and
isotropic. Symmetries of this spacetime are

• Translations in space and time directions — infinitesimal translations generated by
Pµ, µ = 0, 1, 2, 3.

• Lorentz transformations (rotations and boosts) — infinitesimal Lorentz transforma-
tions generated by Mµν . (Mµν = −Mνµ are antisymmetric.)

They satisfy the following algebra (Poincaré algebra)

[Pµ, Pν ] = 0,
[Mµν , Pλ] = i (ηνλPµ − ηµλPν) , (1.1)

[Mµν ,Mλσ] = i (ηνλMµσ − ηνσMµλ + ηµσMνλ − ηµλMνσ) .

Our convention for the metric is the standard one in particle physics: ||ηµν || = diag(+1,−1,−1,−1).
Quantum fields (and elementary particles described by the excitation of these fields)

transform covariantly under Lorentz transformations. A trivial example is a scalar field φ

φ(x)→ φ′(x′) = φ(x)

More precisely, as

xµ → x′
µ = Λµνxν ,

φ(x) → φ′(x) = φ(Λ−1x).

In the above, Λ is a finite Lorentz transformation, and we have adopted the so called active
point of view.

This is clearly the simplest possible behaviour of a field which has just one ‘component’.
For a multi-component field, there could be mixing between its various components. For
example, for a vector Vµ

V µ(x)→ V ′
µ(x) = ΛµνV ν(Λ−1x).

This is the defining relation of a vector. In its infinitesimal form, Λµν = δµν − iωρσ(Mρσ)µν ,
where

(Mρσ)µν = iδµρ ησν − iδµσηρν (1.2)
1The effect of gravity is negligible at energies far below the Planck scale — in the usual domain of

elementary particle physics.
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is the matrix representation of the Lorentz generators on vectors2, and ω’s are infinitesimal
angles and velocities parametrising rotations and boosts. The commutation relations (1.1)
are equivalent to the statements that Pµ is a vector operator, and that Mµν defines a rank
2 anti-symmetric tensor.

In order to define a spinor, let us do the following.

Exercise: Define the infinitesimal generators of

rotations Li =
1
2
εijkMjk, and

boosts Ki = M0i; i, j = 1, 2, 3. (1.3)

Express the commutators between Mµν in terms of the generators Li’s and Ki’s.
Show that the combinations

J± =
1
2

(L± iK) (1.4)

commute with each other and separately satisfy the angular momentum algebra:

[J+
i , J

+
j ] = iεijkJ

+
k ,

[J−i , J
−
j ] = iεijkJ

−
k , (1.5)

[J+
i , J

−
j ] = 0.

This exercise shows that the Lorentz algebra is (almost) a product of two independent an-
gular momentum algebras. Transformation properties of fields which transform covariantly3

under Lorentz algebra are determined by their behaviour under the two angular momentum
algebras.

Recall that the transformation properties of fields/states under rotation in three di-
mensions, (that is representations of angular momentum), are labelled by spin j, where
j = 0, 1

2 , 1,
3
2 , · · · can take any half-integer value. Lorentz transformation properties of fields

are therefore labelled by a pair of half-integers (j+, j−), where j± = 0, 1
2 , 1,

3
2 , · · · inde-

pendently. For example, (0, 0) is the scalar representation. It corresponds to the choice
J± = 0.

If we take J+
i = 1

2σi, (σi, i = 1, 2, 3 are the three Pauli matrices); and J− = 0, the
corresponding field transforms in the (1

2 , 0) representation. This two-component field is

called a left chirality spinor. We shall label this as ψα =

(
ψ1

ψ2

)
. Under a Lorentz

transformation
ψα → ψ′α =

(
δβα − iωρσ(Mρσ)α

β
)
ψβ . (1.6)

On the other hand, if we choose J+ = 0 and J−i = 1
2σi, the field transforms as (0, 1

2)
representation. Again we have a two-component field called a right chirality spinor. We

shall adopt a convention in which this field is denoted by χ̄α̇ =

(
χ̄1

χ̄2

)
. Under a Lorentz

transformation
χ̄α̇ → χ̄′α̇ =

(
δα̇
β̇
− iωρσ(Mρσ)α̇β̇

)
χ̄β̇. (1.7)

2On scalars Mµν = 0, i.e. Λ =1.
3Fields that transform covariantly are said to be in a representation of the algebra.
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The left and right chirality spinor representations are complex as is evident from the defi-
nition (1.4) of the generators.

One may now work out, with the help of the above exercise, that for a left chirality
spinor ψα (respectively right chirality spinor χ̄α̇), the Lorentz generators are given by the
following matrices

(Mµν)α
β ≡ (σµν)α

β =
i

4

[
(σµ)αγ̇(σ̄ν)γ̇β − (σν)αγ̇(σ̄µ)γ̇β

]
,

(Mµν)α̇β̇ ≡ (σ̄µν)α̇β̇ =
i

4

[
(σ̄µ)α̇γ(σν)γβ̇ − (σ̄ν)α̇γ(σµ)γβ̇

]
. (1.8)

In the above we have introduced the notation

σµ = σ̄µ = (1, ~σ)
σ̄µ = σµ = (1,−~σ),

where 1 is the 2× 2 identity matrix.
The more familiar Dirac spinor is made up of one left and one right chirality spinor

ΨD =

(
ψα

χ̄β̇

)
.

On a Dirac spinor the Lorentz generators take the form Mµν = 1
4 [γµ, γν ], where

γµ =

(
0 σµ

σ̄µ 0

)
.

The nomenclature left- and right-chirality spinors used above may now be related to the
familiar notion of chirality.

Notice the index structure of the matrices σµ and σ̄µ. The former has undotted-dotted
indices while the latter has dotted-undotted ones.

Exercise: Write the Clifford algebra

{γµ, γν} = 2ηµν

in terms of the σµ and σ̄µ matrices.

Exercise: Show that
(σµν)† = σ̄µν

and

σµν =
i

2
εµν

λρσλρ,

σ̄µν = − i
2
εµν

λρσ̄λρ, (1.9)

where, ε0123 = +1 in our convention. The eqns.(1.9) mean that the rank 2
antisymmetric tensor σµν (σ̄µν respectively) is (anti-)self-dual.
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A Lorentz vector transforms in the (1
2 ,

1
2) representation. Therefore one can make a

vector by combining left and right chirality spinors. In other words, a vector may be
thought to have two spinor indices, one undotted (left type) and one dotted (right type).
The transition to this description from the more familiar one is done with the help of the
σµ matrices, (which may be thought of as Clebsch-Gordon coefficients):

Vµ → Vαβ̇ = Vµ(σµ)αβ̇ .

Exercise: Since a vector index can be traded with a pair of spinor indices, for
a second rank tensor Tµν we may define

Tµν → Tαβα̇β̇ = Tµν(σµ)αα̇(σν)ββ̇ .

Breaking the above in symmetric and antisymmetric pieces one has

Tαβα̇β̇ = T(αβ)[α̇β̇] + T[αβ](α̇β̇) + T[αβ][α̇β̇] + T(αβ)(α̇β̇)

≡ εα̇β̇T(αβ) + εαβT(α̇β̇) + εαβεα̇β̇T + T(αβ)(α̇β̇),

where, T(α̇β̇) = − 1
2ε
αβTαβα̇β̇, etc. Show that the first (respectively second) term

on the RHS above correspond to antisymmetric (anti-)self-dual part of the the
tensor Tµν , while last term is the traceless symmetric part and the third term is
the trace.

Show that from the anti-symmetric Lorentz generators Mµν , we get two sets
of tensors Mαβ and M̄α̇β̇ in terms of which the commutation relations read as
follows:

[Mαβ ,Mγδ] =
1
2

(εαγMβδ + εαδMβγ + εβγMαδ + εβδMαγ) ,

and similarly for [M̄α̇,β̇, M̄γ̇,δ̇] while [M,M̄ ] = 0. Also show that

Mαβψγ =
1
2

(εγαψβ + εγβψα) ,

and a similar relation for M̄ψ̄.

There is one last thing we need to do before we get back to supersymmetry. Recall that
one can define tensors by taking products of vectors. These have multiple indices. Similarly,
one can define ‘spinor-tensors’ that have multiple spinor indices and transform like products
of spinors. Indeed, the above ‘redefinition’ of vector is such an example. Now consider the
tensor εαβ ,

||εαβ || = − ||εαβ || =
(

0 −1
1 0

)
, (1.10)

in our convention.

Exercise: Show that εαβ is a (numerically) invariant tensor under Lorentz
transformation.
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With the help of this ε-tensor, we can write the transpose of the spinor ψα(
ψT
)
α
≡ ψα,

by ‘raising the index’ as:

ψα = εαβψβ ⇒ ψα = εαβψ
β = −ψβεβα. (1.11)

Notice that the combination ψTχ = ψβχβ = εαβψαχβ is Lorentz invariant. herefore εαβ

behaves like the ‘metric’ for the left-chirality spinors.
Similarly one can define the ‘metric’ εα̇β̇ on the dotted spinors4, and lower/raise indices

by
ψ̄α̇ = εα̇β̇ψ̄

β̇ ⇒ ψ̄α̇ = εα̇β̇ψ̄β̇ = −ψ̄β̇ε
β̇α̇. (1.13)

Notice that due to the antisymmetry of the spinors under exchange, one has to be careful in
ordering them while contracting indices. In the convention we shall adopt, undotted indices
are contracted from NW to SE, i.e. in the ↘ direction,

ψχ = ψαχα = −χαψα;

and dotted indices from SW to NE, i.e. in the ↗ direction

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = −χ̄α̇ψ̄α̇

respectively.

In defining supersymmetry, we augment the infinitesimal generators of the Poincaré
algebra (Pµ and Mµν), by the fermionic generators

Qα, α = 1, 2,
Q̄α̇, α̇ = 1, 2;

that is by a left-chirality spinor Qα and its hermitian conjugate

(Qα)† = Q̄α̇.

These generators obey the following (anti-)commutation relations.

[Qα, Pµ] = [Q̄α̇, Pµ] = 0,

[Qα,Mµν ] =
1
2

(σµν)α
βQβ,

[Q̄α̇,Mµν ] =
1
2
Q̄β̇(σ̄µν)β̇ α̇, (1.14)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0,

{Qα, Q̄β̇} = 2σµαβ̇Pµ.
4In our convention,

||εα̇β̇ || = − ||ε
α̇β̇ || =

(
0 −1
1 0

)
, (1.12)

.
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In the above, the second and third line simply define left- and right-chirality spinors. So the
last three equations are really the new relations. The last of these states that the effect of two
successive supersymmetry transformations is the same as that of a spacetime translation.
Recall that we had a glimpse of this fact earlier from our dimensional consideration.

Notice that, in conformity with the spin-statistics theorem, the supersymmetry genera-
tors anticommute.

There are a few things that a standard course on supersymmetry would have discussed
in more detail. We shall just gloss over them.

• The first of this is the fact there is not much option in extending the Poincaré algebra.
In 1967 Coleman and Mandula proved a theorem that may roughly be stated as
follows[9]:

If the infinitesimal generators of the symmetries of a quantum field theory
are bosonic, i.e. they obey commutation relations, then under some reason-
able physical assumption, the corresponding symmetry algebra is a product
of the Poincaré algebra and an internal symmetry algebra.

Haag,  Lopuszanskı and Sohnius[10] showed that if in addition, anticommuting spinor
generators are allowed, (extended) supersymmetry is the only possible generalisation
of the Poincaré algebra.

• In extended supersymmetry there are N sets of spinor generators QAα , Q̄Aα̇, A =
1, 2, · · · , N ; which satisfy the following modified relations

{QAα , Q̄Bβ̇} = 2δABσ
µ

αβ̇
Pµ

{QAα , QBβ } = εαβZ
AB (1.15)

{Q̄Aα̇, Q̄Bβ̇} = − εα̇β̇Z
∗
AB.

The generators ZAB commute with all the other generators of the extended super-
symmetry algebra.

• In addition, the spinors QA transform in the N dimensional i.e. defining representa-
tion of the group of N dimensional unitary matrices U(N) (SU(4) for N = 4). For our
case N = 1, there is a U(1) symmetry. The generators Qα and Q̄α̇ may be assigned
charges +1 and −1 respectively under this symmetry. If R is the generator of this
U(1), we have

[R,Qα] = Qα

[R, Q̄α̇] = − Q̄α̇, (1.16)

and [R, Pµ] = 0, [R,Mµν ] = 0. This is a chiral symmetry, and is in general anomalous.
We shall make use of this symmetry in our discussion of effective field theories.

• The supersymmetry algebra is a generalisation of a Lie algebra, and hence is con-
strained by (generalised) Jacobi identities. The structure of these identities are as
follows.

(−1)εAεC [[A,B} , C} + (−1)εBεA [[B,C} , A}
+ (−1)εCεB [[C,A} , B} = 0,
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where, ε is 0 (respectively 1) for bosonic (fermionic) operators, and the mixed bracket
notation [·, ·} stands for an anticommutator when both the operators are fermionic
and a commutator otherwise.

2 Representations of supersymmetry on states

We shall now discuss the irreducible representations of the supersymmetry algebra, i.e. a
collection of bosonic and fermionic states/fields that transform covariantly under supersym-
metry. First we shall discuss particle states as supersymmetry representations, and come
back to the representation on (quantum) fields in the next lecture.

To begin with let us recall that particle representations of the Poincaré algebra are
labelled by the eigenvalues of the following Casimir operators

• P 2 = PµP
µ with eigenvalue m2 (mass square),

• W 2 = WµW
µ where Wµ = 1

2εµνρσP
νMρσ is the Pauli-Lubansḱı vector.

Exercise: Show that

1. for massive particles, i.e. m2 6= 0, W 2 = − m2j(j+1), where j = j+ + j−;

2. for massless particles, i.e. m2 = 0, Wµ = λPµ, where λ is the helicity.

Therefore mass and spin/helicity are the quantum numbers that label particle states. In
order to describe which quantum numbers label representations of supersymmetry, notice
that

[Pµ, Qα] = [Pµ, Q̄α̇] = 0.

Hence P 2 commute with the new generators, and continue to be a Casimir of the enlarged
symmetry. However,

[Mµν , Qα] 6= 0 [Mµν , Q̄α̇] 6= 0,

and W 2 is no longer a Casimir of the supersymmetry algebra. We need to make the following
modification. Define

Bµ = Wµ −
1
4
Q̄α̇σ̄

α̇β
µ Qβ,

Cµν = BµPν −BνPµ. (2.1)

Exercise: Show that [Cµν , Qα] = 0.

Therefore the second Casimir of the supersymmetry algebra is C2 = CµνC
µν . Super-

symmetry multiplets are labelled by mass and eigenvalue of the operator C2.
We are now ready to construct the representations of the supersymmetry algebra on

particle states, i.e. on asymptotic on-shell physical states.
First, let us consider massive states, i.e. m2 6= 0. In this case, one can go to the rest

frame and make the choice Pµ = (m,0). With this choice, we find that

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ

= 2m

(
1 0
0 1

)
,
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or, explicitly in terms of the components

{Q1, Q̄1̇} = 2m
{Q2, Q̄2̇} = 2m
{Q1, Q̄2̇} = 0 = {Q2, Q̄1̇}.

We have here two pairs of fermionic creation/annihilation operators.
We shall (arbitrarily) choose the dotted spinorial generators Q̄α̇, (α̇ = 1, 2), to be the

creation operators and the undotted ones annihilation operators. Further we may rescale
Q’s by 1/

√
2m to define conventionally normalised creation/annihilation operators

aα =
1√
2m

Qα, α = 1, 2;

a†α =
1√
2m

Q̄α̇, α̇ = 1, 2. (2.2)

Let us define a state |Ω〉 such that

aα|Ω〉 = 0, for α = 1, 2.

|Ω〉 is a (Clifford) vacuum state with respect to the fermionic creation/annihilation opera-
tors.

What are the quantum numbers that label this state? Thanks to our discussion on
Casimirs, we know the answer to this question. One quantum number is of course the mass
m. To find the other one:

Exercise: Show that on massive states, in the rest frame,

Bi = − m
(
Li −

1
4m

Q̄σiQ

)
≡ − mL̃i

and hence,

C0i = − mBi = m2L̃i

Cij = 0.

Therefore, C2 = 2C0iC
0i = 2m4L̃iL̃

i.

It is easy to check that the generators L̃i obey the angular momentum algebra. So the
eigenvalues of L̃2 may be labelled by ̃(̃ + 1), where ̃ can take any half-integral value.
Actually, with our choice of |Ω〉,

L̃i|Ω〉 = Li|Ω〉.

Hence, acting on |Ω〉, ̃ = j label the spin j = j+ + j−. Being an eigenstate of spin, |Ω〉 is
labelled by

|Ω〉 = |m; j, j3〉, j3 = −j,−j + 1, · · · , j − 1, j.

The (Clifford) vacuum |Ω〉 is (2j + 1)-fold degenerate.
The excitations over the vacuum |Ω〉 are defined by the fermionic creation operators a†1

and a†2. We have
|Ω〉

a†1|Ω〉 a†2|Ω〉
a†1a
†
2|Ω〉

(2.3)
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i.e. a total of 4(2j + 1) states in the supersymmetry mutiplet.
Recall that a†α ∼ Q̄α̇ transforms as a

(
0, 1

2

)
spinor. In particular, (by a choice of

convention), a†1 (respectively a†2) has L3 eigenvalue +1
2 (− 1

2). The spins of the different
states in a massive supermultiplet are

state |Ω〉 a†1|Ω〉 a†2|Ω〉 a†1a
†
2|Ω〉

spin j3 j3 + 1
2 j3 − 1

2 j3
(2.4)

If j is an integer, the first and the last states are bosonic, and the second and third ones are
fermionic. The statistics is opposite when j is a half odd integer. As an example, consider
j = 0. There are then four states in the supersymmetry multiplet, two of these have spin
j3 = 0 and the other two have j3 = ±1

2 . The spin zero states may be combined into a scalar
and a pseudo-scalar while the spin half states describe the degrees of freedom of a Weyl
fermion.

This matching of bosonic and fermionic degrees of freedom in a multiplet is a remarkable
property of supersymmetry. We can easily prove the following

Theoerem: Every representation of supersymmetry algebra contains an equal
number of bosonic and fermionic states.

Proof: Let us define the operator (−1)NF whose eigenvalues are +1 on bosonic
and −1 on fermionic states. By definition

(−1)NFQα = − Qα(−1)NF .

Now taking a trace of the representation, (which we assume to be finite dimen-
sional for it to be well defined), we have

tr
[
(−1)NF {Qα, Q̄β̇}

]
= tr[(−1)NFQαQ̄β̇

+(−1)NF Q̄β̇Qα}]

i.e. tr
[
(−1)NFPµ

]
= 0,

where we have used the supersymmetry algebra in the LHS and the cyclic prop-
erty of trace and the identity involving (−1)NF and Qα in the RHS. For a fixed
value of Pµ in a given multiplet, we then have, tr[(−1)NF ] = 0, which proves the
assertion.

Now let us discuss the supersymmetry representation on massless states. We can choose
a reference frame such that

Pµ = (E, 0, 0, E)

Exercise: Show that on massless states W0 = λE, W3 = λE, and hence

B0 = W0 −
1
4
Q̄Q

B3 = W3 +
1
4
Q̄σ3Q.

Also that the only non-vanishing component of Cµν is

C03 = E(B0 −B3) = − 1
2
EQ̄2̇Q2,

whence, C2 = 0.
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In our chosen basis the supersymmetry algebra takes the following form

{Qα, Q̄β̇} = 4E

(
1 0
0 0

)
,

or, explicitly in components

{Q1, Q̄1̇} = 4E
{Q2, Q̄2̇} = 0
{Q1, Q̄2̇} = 0 = {Q2, Q̄1̇}.

As in the massive case, let us define |Ω〉 annhilated by the annihilation operators a1 ∼ Q1

and a2 ∼ Q2. In addition, since {Q2, Q̄2̇} = 0, we have

〈Ω|Q2Q̄2̇|Ω〉 = 0,

i.e, the excitation Q̄2̇|Ω〉 is a null state, or Q̄2̇ is zero in the operator sense.
This leaves us with only one pair of creation/annihilation operators a = 1

2
√
E
Q1 and

a† = 1
2
√
E
Q̄1̇, which satisfy {a, a†} = 1. The massless supersymmetry consists of the states

|Ω〉 : a non-degenerate state of helicity λ
a†|Ω〉 : a non-degenerate state of helicity λ+ 1

2 .
(2.5)

Notice that the massless supersymmetry multiplet is not a CPT eigenstate. One needs two
pairs of irreducible massless multiplets, i.e. four states of helicity λ, λ+ 1

2 and −λ,−1
2 − λ

to complete a CPT eigenstate.

We just finished discussing how certain bosonic and fermionic particle states form rep-
resentations of supersymmetry. In other words, we have a set of states which transforms
covariantly under supersymmetry variation. These are asymptotic on-shell states. In or-
der to construct a quantum field theory, however, we need to know how general off-shell
states form representations of supersymmetry. This can be done by considering bosonic
and fermionic fields and studying their behaviour under supersymmetry variation. A far
more economic and elegant approach is in terms of what will be called superfields. Different
bosonic and fermionic fields that mix under supersymmetry transformations can be thought
of as components of this single superfield. This approach is also advantageous from a prac-
tical point of view, as many properties of supersymmetry are manifest when expressed in
terms of superfields. These concepts were introduced by Salam and Strathdee[11].

To do this, however, we need to make a digression to discuss the algebra and calculus of
Grassmann variables. To this end, let us introduce spinor parameters θα, θ̄α̇ (α, α̇ = 1, 2)
— (notice the index assignment) — which satisfy the relations

{θα, θβ} = 0,
{θ̄α̇, θ̄β̇} = 0, (2.6)

{θα, θ̄β̇} = 0,

as also [xµ, θα] = 0, [xµ, θ̄α̇] = 0. These are anticommuting analogues of a complex vari-
able z, and are called Grassmann numbers or variables. The pair (θ, θ̄) can be taken to
parametrise infinitesimal supersymmetry variation

δsusy = (θαQα + θ̄α̇Q̄
α̇) ≡ (θQ+ θ̄Q̄). (2.7)
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Due to the anticommuting nature of the parameters (θ, θ̄), the combinations θQ ≡ θαQα
and θ̄Q̄ ≡ θα̇Q̄α̇ satisfy the commutation relations

[θQ, θ̄Q̄] = 2(θσµθ̄)Pµ,
[θQ, θQ] = 0 = [θ̄Q̄, θ̄Q̄]. (2.8)

All the algebraic relations of supersymmetry are now expressed in terms of commutators.
(We shall also consider the replacement Pµ → − yµPµ, where yµ is an infinitesimal param-
eter for translation.)

The infinitesimal variations may now be exponentiated to define a finite transformation

G(y, θ, θ̄) = exp
{
i
(
−yµPµ + θαQα + θ̄α̇Q̄

α̇
)}

.

Notice the dimensions of the parameters [y] = M−1 and [θ] = [θ̄] = M−1/2.

Parenthetical comments: Actually, we should have written

G(y, θ, θ̄) = exp
{
i
(
−y ·P + θQ+ θ̄Q̄

)}
exp

{
− i

2
ωµνMµν

}
,

but we left out the Lorentz transformation part. It is consistent to set that part to identity.
In other words, we are parametrising a coset space defined by the quotient of the super-
Poincare group by its Lorentz subgroup.

Notice also that since the anti-commutators of Q, Q̄ are non-zero, the following forms

exp {i (−y ·P + θQ)} exp
{
iθ̄Q̄

}
exp

{
i
(
−y ·P + θ̄Q̄

)}
exp {iθQ}

and the one we gave earlier for G are not all equivalent. It is also consistent to work with
either of the above forms and get the same results. However the explicit differential operator
form for the generators Q and Q̄ will be different in each case.

Notice that in the above the Grassmann parameters (θα, θ̄α̇) appear in the same footing
as the coordinates yµ. So the full parameter space is labelled by

(yµ, θα, θ̄α̇); µ = 0, · · · , 3; α, α̇ = 1, 2.

We should think of this space as 4 normal (i.e. bosonic) plus 4 anti-commuting (i.e.
fermionic) extension of our familiar spacetime. (The dimension of the extended space is
sometimes written as (4|4).) This is called the N = 1 rigid superspace.

Just as it is advantageous to construct relativistic quantum field theory in a manifestly
Lorentz covariant formalism, it is of great advantage to formulate supersymmetric theories
in superspace.

3 Superspace & superfields

We can define functions in superspace — these are going to be the superfields — and
differentiate and integrate them with respect to the coordinates (xµ, θα, θ̄α̇). To explain
the rules on differentiation and integration, let us consider the simpler example of a (1|1)
dimensional superspace. This has only two coordinates (x, θ) and θ2 = 0. Due to the

12



nilpotence of the coordinate θ, Taylor expansion of a function f(x, θ) in superspace in
terms of θ terminate after the linear term:

f(x, θ) = f0(x) + θf1(x), (3.1)

where f0(x) and f1(x) are functions of of the commuting coordinate x. Using

d

dθ
(θ) = 1

d

dθ
(1) = 0, (3.2)

it follows that
d

dθ
(f(x, θ)) = f1(x). (3.3)

(Notice that the dimension [d/dθ] is M1/2.)
Now since we want the integral of a total derivative to vanish, we define the following

rules of integration ∫
dθ = 0,

∫
dθ θ = 1, (3.4)

which gives ∫
dθ

d

dθ
f(x, θ) =

∫
dθ f1(x) = 0.

The integral so defined is invariant under translation of θ by an arbitrary constant ξ:∫
d(θ + ξ) f(x, θ + ξ) =

∫
dθ [f0(x) + (θ + ξ)f1(x)]

=
∫
dθ θf1(x)

=
∫
dθ f(x, θ).

It is a curious fact that integration and differentiation in θ are equivalent!

• d

dθ
f(x, θ) = f1(x)

•
∫
dθ f(x, θ) = f1(x)

And consistent with these rules [dθ] = M1/2, unlike in ordinary space. Finally, we can
define a delta function by

δ(θ) = θ

leading to the expected result
∫
dθ δ(θ) = 1.

Coming back to our (4|4) dimensional superspace, we have the following rules (∂α ≡
∂/∂θα and ∂̄α̇ ≡ ∂/∂θ̄α̇):

∂αθ
β = δβα,

∂αθβ = ∂α(εβγθγ) = −εαβ ,
∂̄α̇θ̄β̇ = δα̇

β̇
,

∂̄α̇θ̄β̇ = −εα̇β̇. (3.5)
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One can also ‘raise’ index of ∂α by chain rule of differentiation

∂α ≡ ∂

∂θα
=
∂θβ

∂θβ

∂

∂θβ
= ∂α(εβγ) ∂β = −εαβ∂β.

The following is a compilation of useful results that will come in handy in our subsequent
calculations:

∂α
(
θβθγ

)
= δβαθ

γ − δγαθβ

∂α (θθ) = 2θα
∂̄α̇
(
θ̄θ̄
)

= 2θ̄α̇ (3.6)
∂2 (θθ) = 4
∂̄2 (θ̄θ̄) = 4

It is straightforward to derive the above.
As for integration, we shall define the following convention

d2θ = −1
4
dθαdθβεαβ =

1
2
dθ1dθ2,

d2θ̄ = −1
4
dθ̄α̇dθ̄β̇ε

α̇β̇ = −1
2
dθ̄1̇dθ̄2̇ (3.7)

d4θ ≡ d2θ d2θ̄;

so that, ∫
d2θ θθ = +1,∫
d2θ̄ θ̄θ̄ = +1. (3.8)

After this long detour we get back to the transformation generated by

G(xµ, θα, θ̄α̇) = ei(−x
µPµ+θαQα+θ̄α̇Q̄

α̇).

This generator is unitary since (θαQα)† = Q̄α̇θ̄
α̇ = θ̄α̇Q̄α̇. If we consider two such successive

transformations, the result is

G(x, θ, θ̄) G(y, ξ, ξ̄) = exp
[
− i(xµ + yµ − iθασµ

αβ̇
ξ̄β̇

iξασµ
αβ̇
θ̄β̇)Pµ + i (θα + ξα)Qα + i

(
θ̄α̇ + ξ̄α̇

)
Q̄α̇
]
.

Exercise: Show the above. Hint: You will need the Baker-Campbell-Hausdorf
formula

eA eB = exp
(
A+B +

1
2!

[A,B]

+
1
3!

(
1
2

[[A,B], B] +
1
2

[A, [A,B]]
)

+ · · ·
)
.
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The successive applications of superspace transformations generate the following motion is
terms of the superspace coordinates

(x, θ, θ̄)
g(y,ξξ̄)−→ (x+ y + iξσθ̄ − θσξ̄, θ + ξ, θ̄ + ξ̄),

which is given by the following differential operators

yµPµ = i yµ
∂

∂xµ
,

ξαQα = ξα
(
∂α − iσµαβ̇ θ̄

β̇∂µ
)
,

ξ̄α̇Q̄
α̇ = ξ̄α̇

(
−∂̄α̇ + iσ̄µ α̇βθβ∂µ

)
.

Alternatively, we may write5,

Pµ = i
∂

∂xµ
,

Qα = ∂α − iσµαβ̇ θ̄
β̇∂µ, (3.9)

Q̄α̇ = ∂̄α̇ − iθβσµβα̇∂µ.

The above differential operator representation leads to the anti-commutator

{Qα, Q̄β̇} = − 2σµ
αβ̇
Pµ,

in apparent disagreement with (1.14), due to the extra minus sign. There is, however, no
contradiction, as what we witness here is the difference in the active and passive points of
view of symmetry transformations. The differential operator representation is in terms of
superspace coordinates.

We shall now define a general scalar superfield Φ(x, θ, θ̄) in our (4|4) dimensional N = 1
rigid superspace. A scalar function satisfies

Φ(x′, θ′, θ̄′) = Φ(x, θ, θ̄),

and hence
δξΦ =

(
ξQ+ ξ̄Q̄

)
Φ. (3.10)

Let us now consider the Taylor expansion of Φ in powers of θ and θ̄.

Φ(x, θ, θ̄) = φ(x) + θψ(x) + θ̄χ̄(x) + (θθ)m(x)
+(θ̄θ̄)n(x) + (θσµθ̄)vµ(x) + (θθ)θ̄λ̄(x)
+(θ̄θ̄)θη(x) + (θθ)(θ̄θ̄)d(x). (3.11)

Each term in the above expansion is a field in physical (Minkowski) spacetime. In particular

Fields Type Bose dof Fermi dof
• φ(x),m(x) scalars 4× 2 0

n(x), d(x)
• ψα(x), ηα(x) L-spinors 0 2× 4
• χ̄α̇(x), λ̄α̇(x) R-spinors 0 2× 4
• vµ(x) vector 4× 2 0

(3.12)

5Since Q and Q̄ are not hermitian operators, we have rescaled them by factors of i, without anything
going wrong.
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The fields {φ(x), ψα(x), χ̄α̇(x), · · ·} are called the components of the superfield Φ.
Let us remark parenthetically that the above is the most general possible expansion

for a scalar superfield, since e.g. θ̄σ̄µθ = − θσµθ̄ and (σµθ̄)α(θσµθ̄) = 2θα(θ̄θ̄), etc. (See
Appendix A for this type of manipulations.)

Now consider the supersymmetry variation of the scalar superfield (3.10). In terms of
the component fields this leads to the following relations

δξφ = ξψ + ξ̄ψ̄,

δξψ = 2ξm+ (σµξ̄)(vµ + i∂µφ),
δξχ̄ = 2ξ̄n+ (σ̄µξ)(− vµ + i∂µφ),

δξm = ξ̄λ̄− i

2
(∂µψ)σµξ̄,

δξn = ξη +
i

2
ξσµ(∂µψ̄), (3.13)

δξvµ = ξσµλ̄+ ησµξ̄ +
i

2
(∂µψ)ξ − i

2
(∂µχ̄)ξ̄,

δξλ̄ = 2ξ̄d+ i(σ̄µξ)∂µm+
i

2
ξ̄(∂µvµ),

δξη = 2ξd+ i(σµξ̄)∂µn−
i

2
ξ(∂µvµ),

δξd =
i

2
ξσµ(∂µλ̄)− i

2
(∂µη)σµξ̄.

Exercise: (i) Derive the above relations. (You will need to use the Fierz iden-
tities given in Appendix A.)
(ii) Work out

(δξ1δξ2 − δξ2δξ1)φ = − 2i (ξ1σ
µξ2 − ξ2σ

µξ1) ∂µφ.

4 Chiral & vector superfields

The result obtained at the end of the last lecture shows that the general scalar superfield
forms a basis for an off-shell linear representation of supersymmetry:

• Supersymmetry variations of component fields are proportional to each other (also
involving derivatives).

• Therefore the supersymmetry algebra closes, i.e. supersymmetry variations involve
only those fields present in the mutiplet and no others.

However, there are a large number of component fields. It turns out that the set is not the
minimal one. In other words, the scalar superfield representation is reducible6.

In an effort to reduce the number of component fields in (3.11), let us try to set one of
the spinor fields, say χ̄ to zero. To make this consistent with supersymmetry, we should
also require that its supersymmetry variation vanishes, and so on. In the end, we have to

6It is not fully reducible though. That is, the scalar superfield cannot be written as a direct sum of
irreducible superfields.
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impose the following set of constraints

χ̄(x) = 0
vµ(x) = i∂µφ(x)
n(x) = 0

η(x) = 0
λ̄(x) = − i

2(∂µψ)σµ

d(x) = − 1
4 φ(x)

(4.1)

leading to a reduced scalar superfield

ΦR = φ+ θψ + (θθ)m+ i(θσµθ̄)∂µφ

+
i

2
(θθ)

(
(∂µψ)σµθ̄

)
− 1

4
(θθ)(θ̄θ̄) φ.

Exercise: Check the mutual consistency of the constraints imposed in (4.1).
This demonstrates that the reduced scalar superfield ΦR, (with fewer number
of components than the general scalar superfield Φ), defines an off-shell linear
representation of the supersymmetry algebra.

Let us now define
yµ = xµ + iθασµ

αβ̇
θ̄β̇ . (4.2)

Using Taylor expansion, and some spinor identities, one can rewrite the restricted superfield
ΦR as

ΦR(y, θ) = φ(y) + θψ(y) + (θθ)m(y), (4.3)

which shows that the restricted superfield is a function of y and θ, but has no explicit
dependence on θ̄. Had it not been for the θ̄ in the definition of y in (4.2), we could have
concluded that ΦR is independent of θ̄, that is

∂̄α̇ ΦR(y, θ) != 0.

This is of course not the case. Another problem is that

[∂̄α̇, ξQ] = iξβσµβα̇∂µ,

that is, ∂̄α̇ does not commute with supersymmetry variation. Hence imposing a constraint
like ∂̄α̇ΦR = 0 is not consistent with supersymmetry. In other words, ∂̄α̇ΦR is not a
superfield. Thankfully from our experience with tensor analysis, we know what to do
in such a situation: define an appropriate covariant derivative to impose the constraint
consistently. The covariant derivative defined as

D̄α̇ = −∂̄α̇ − iθβσµβα̇∂µ (4.4)

leads to a consistent way to impose the constraint

D̄α̇Φ = 0 (4.5)

on the general scalar superfield (3.11) to restrict it to ΦR.

Exercise: Show that [D̄α̇, ξQ] = 0, or equivalently {D̄α̇, Qβ} = 0. Also show
that {D̄α̇, Q̄β̇} = 0, and {D̄α̇, D̄β̇} = 0.

Exercise: Show that D̄α̇y
µ = 0 and D̄α̇θ

β = 0.
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The last exercise shows that a superfield constrained by (4.5) is a function of y and θ only,
and has no explicit dependence on θ̄.

Definition: A scalar superfield Φ constrained by the (spinorial) chirality condition D̄α̇Φ =
0 is called a chiral superfield.

We have already found an example of a chiral superfield in (4.3):

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y). (4.6)

(In the above, a scaling ψ →
√

2ψ and a change in notation m → F has been done to
conform with standard notation in the literature.) A chiral superfield has the following

• complex scalar φ dof = 2 bose [φ] = M,

• complex L-spinor ψ dof = 4 fermi [ψ] = M3/2,
• complex scalar F dof = 2 bose [F ] = M2.

Under infinitesimal supersymmetry transformation

δξφ =
√

2ξψ

δξψ =
√

2ξF +
√

2iσµξ̄ ∂µφ (4.7)

δξF = −
√

2i∂µψσµξ̄.

An important property of a chiral superfield is that the product of two chiral superfields
is again a chiral superfield. This follows from the chain rule of covariant differentiation.

The notion of an anti-chiral superfield is immediate:
Definition: A scalar superfield that satisfies the condition DαΦ = 0, where

Dα = ∂α + iσµ
αβ̇
θ̄β̇∂µ, (4.8)

is an anti-chiral superfield.

Exercise: Show that {Dα, Qβ} = 0. Also show that {Dα, Q̄β̇} = 0, and
{Dα, Dβ} = 0, and finally

{Dα, D̄β̇} = − 2iσµ
αβ̇
∂µ.

Exercise: Let y† = x− iθσθ̄. Show that Dαy
µ† = 0 and Dαθ̄

β̇ = 0.

An anti-chiral superfield is therefore a function of y† and θ̄ only. In particular, if Φ(y, θ) is
a chiral superfield (4.6), Φ†(y†, θ̄) is an anti-chiral superfield

Φ†(y†, θ̄) = φ∗(y†) +
√

2θ̄ψ̄(y†) + θ̄θ̄F ∗(y†).

As before, the product of two anti-chiral superfields is again an anti-chiral superfield.
However the product Φ†Φ is neither a chiral nor an anti-chiral superfield. Same applies to
the sum (Φ + Φ†).
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Exercise: Show that the imposing the conditions DαΦ = 0 and D̄α̇Φ = 0
simultaneously on a scalar superfield reduces it to a constant.

Exercise: Define

ϕ = Φ
∣∣∣
θ=θ̄=0

Ψα = DαΦ
∣∣∣
θ=θ̄=0

F = DαDαΦ
∣∣∣
θ=θ̄=0

.

Express ϕ,Ψ and F in terms of the component fields φ, ψ and F . Compute the
transformation laws for ϕ,Ψ and F using the differential operator representation
for Q, Q̄.

Exercise: Show that in terms of the variables (y, θ, θ̄), the covariant derivatives
may be written as

Dα = ∂α + 2iσµ
αβ̇
θ̄β̇

∂

∂yµ
,

D̄α = − ∂α − 2iθ̄β̇σ̄
µβ̇α ∂

∂yµ
,

D̄α̇ = − ∂α̇,
D̄α̇ = ∂α̇. (4.9)

Exercise: Compute the expressions for Φ2, Φ3 and Φ†Φ in the component field
expansion.

There is another way to reduce the number of fields in a general scalar superfield. For
a scalar superfield V (x, θ, θ̄), let us impose the covariant reality condition:

V (x, θ, θ̄) = V †(x, θ, θ̄). (4.10)

In components, this leads to the following set of constraints

φ = φ∗

(ψα)∗ = χ̄α̇

m = n∗

vµ = (vµ)∗

ηα = (λ̄α̇)∗

d = d∗

(4.11)

Therefore, a scalar superfield restricted by the reality condition has four real scalars, (which
may be combined into two complex scalars), one real vector and two complex Weyl spinors,
(or equivalently, one real Majorana spinor). There are altogether eight bosonic and eight
fermionic degrees of freedom.

We can already construct an example of a real superfield trivially from a chiral superfield.
If Λ is a chiral superfield, the sum (Λ + Λ†) is a real superfield. In fact, this means that a
real superfield is not uniquely determined. Given a real superfield V (x, θ, θ̄), it is possible
to construct another one

V (x, θ, θ̄)→ V (x, θ, θ̄) + Λ(y, θ) + Λ†(y†, θ̄). (4.12)
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This is a ‘gauge freedom’ in defining a real superfield. If we expand a real superfield in
components

V (x, θ, θ̄) = ρ(x) + θχ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄M∗(x)

−(θσµθ̄)Aµ(x) + iθθ θ̄λ̄(x)− iθ̄θ̄ θλ(x) +
1
2
θθ θ̄θ̄ D,

and use the freedom in(
Λ + Λ†

)
(x, θ, θ̄) = (φ+ φ∗) +

√
2(θψ + θ̄ψ̄) + θθF + θ̄θ̄F ∗

+iθσµθ̄(∂µφ− ∂µφ∗) +
i√
2
θθ(θ̄σ̄µ∂µψ)

− i√
2
θ̄θ̄(θσµ∂µψ̄)− 1

4
θθ θ̄θ̄( φ+ φ∗),

we find that

δρ = φ+ φ∗ = 2 Reφ
δχ =

√
2ψ

δM = F

δAµ = − i∂µ(φ− φ∗) = ∂µ(2 Imφ) (4.13)

δλ =
1√
2
σµ∂µψ̄

δD = − 1
2

(φ+ φ∗) = 2 Reφ.

Let us first point out the most interesting aspect of the ‘gauge transformation’ in (4.13)
above:

δAµ(x) = ∂µ(2 Im φ(x)) = ∂µε(x),

where, ε(x) is a real scalar field. This is therefore the usual abelian gauge transformation
for the vector field Aµ(x) in the components of the real superfield V . For this reason, a real
superfield is also known as a vector superfield.

The more general superfield transformation (4.12) means that any superfield action
invariant under the above abelian gauge transformation is also independent of several com-
ponent fields of V . In particular, we may choose Reφ, F and ψ to set ρ,m and χ to zero
respectively. This partially fixes the gauge freedom in V → V + Λ + Λ†, and is called the
Wess-Zumino gauge. After this gauge fixing, the vector superfield takes the form

VWZ = − (θσµθ̄)Aµ + iθθ θ̄λ̄− iθ̄θ̄ θλ+
1
2
θθ θ̄θ̄ D. (4.14)

It should be stressed that the Wess-Zumino gauge imposes no restriction on Imφ, therefore
it does not fix the abelian gauge freedom of the component vector field Aµ.

There are four real bosonic degrees of freedom in the component fields of VWZ : (4−1) = 3
from the vector Aµ, and one from the real scalar D. Also there are four real fermionic ones
from λ.
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5 More on vector superfields

Another way to reformulate Wess-Zumino gauge fixing is to observe that, without any loss
of generality, a vector superfield may be decomposed as

V = VWZ + Λ + Λ†, (5.1)

where Λ is a chiral superfield.

Exercise: Work out the component expansion for V 2
WZ and V 3

WZ .

While the Wess-Zumino condition allows one to get rid of the superfluous fields in a
vector superfield and retain only the relevant ones, it is not invariant under supersymmetry
variation. In other words, the WZ gauge condition is not covariant. It is, however, possible
to give a covariant description in which only the necessary fields in a vector superfield are
retained. To this end let us define the following covariant derivatives on a vector superfield.

Wα = − 1
4
(
D̄D̄

)
DαV (x, θ, θ̄)

= − 1
8
(
D̄D̄

) (
e−2VDαe

+2V
)
,

W̄α̇ = − 1
4

(DD) D̄α̇V (x, θ, θ̄)

= − 1
8

(DD)
(
e+2V D̄α̇e

−2V
)
. (5.2)

Notice that

1. The construction/definition of the Wα (W̄α̇) ensures that7

D̄α̇Wα = 0
(
DαW̄α̇ = 0

)
, (5.3)

that is, Wα (resp. W̄α̇) is a (anti-)chiral superfield. Since this field also carries a spinor
index it is a chiral spinor superfield.

2. However, Wα is not a general chiral superfield, since it satisfies

DW = D̄W̄ . (5.4)

3. The fields Wα and W̄α̇ are both invariant under the gauge transformation (4.12).

Exercise: Prove the two statements mentioned above.

It is important to note that the two superfields Wα and W̄α̇ are invariant under the
full superfield gauge transformation. Therefore even the abelian gauge invariance of the
component vector field Aµ (that the Wess-Zumino gauge did not fix), is no longer available.
Consequently, the components of these (anti-)chiral superfields can be calculated in the
Wess-Zumino gauge without any loss of generality. That is the exercise we shall do now. In
order to simplify the computation, observe that being a chiral superfield, Wα is a function
of y and θ only, (similarly W̄α̇ is a function of y† and θ̄), with no explicit dependence on θ̄
(resp. θ).

7Since the D̄’s anticommute and has only two independent components, D̄3 = 0.
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Exercise: Carry out this computation in detail to show that

Wα = − iλα(y) + θαD(y) + iθβσµνβαFµν(y)

+(θθ)σµ
αβ̇
∂µλ̄

β̇(y),

W̄α̇ = + iλ̄α̇(y†) + θ̄α̇D(y†)− iθ̄β̇σ̄
µνβ̇
α̇ Fµν(y†)

+(θ̄θ̄)σ̄µβα̇ ∂µλβ(y†). (5.5)

Hint: Start by writing the real superfield in Wess-Zumino gauge VWZ as a func-
tion of (y, θ, θ̄) and use results from (4.9).

We see that the component fields in the spinor chiral superfield W are a left-handed
spinor λ, a scalar D and the field strength Fµν . It is therefore also called a field strength su-
permultiplet. Moreover, since σµν is self-dual (1.9), only the self-dual part of Fµν contributes
to the degrees of freedom in W .

One can generalise this result in which the vector field in the vector supermultiplet has
abelian gauge invariance to one with non-abelian gauge invariance. In order to do that,
however, we have to rewrite the abelian gauge condition in a way that is generalisable to
the non-abelian case. Recall the Wess-Zumino gauge freedom V → V + Λ + Λ†. With a
scaling Λ→ iΛ, this is equivalent to

eV → e−iΛ
†
eV e+iΛ. (5.6)

Let us now elevate the superfields to Lie algebra valued superfields

V → Vij = taijVa,

Λ → Λij = taijΛa,

where ta are hermitian generators of some Lie algebra satisfying[
ta, tb

]
= ifabctc, (5.7)

and normalised so that

tr
(
tatb

)
= C(R) δab,

C(R) =
dim R

dim g
C2(R). (5.8)

In the above, dim R and C2(R) are the dimension and the quadratic Casimir in the repre-
sentation R and dim g is the dimension of the Lie algebra g.

To first order in gauge parameter superfield Λ

δV = i(Λ− Λ†) +
i

2

[
V, (Λ + Λ†)

]
+
i

12

[
V, [V, (Λ− Λ†)]

]
+ · · · . (5.9)

The linear term δV = i(Λ − Λ†) still allows for a choice of WZ gauge which, as in the
abelian case, does not fix the non-abelian gauge freedom of the component vector fields Aaµ.
Once we fix the WZ gauge, we have V a

WZ = (θσθ̄)Aaµ + · · ·, and also (Λ + Λ†) = −2iRe (φ),
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(Λ−Λ†) = 2i(θσθ̄)∂µIm (φ). Therefore the third term and above in (5.9) vanish in the WZ
gauge as they have too many θs or θ̄s. The relation

δVWZ = i(Λ− Λ†) +
i

2

[
V, (Λ + Λ†)

]
(5.10)

implies the usual non-abelian gauge transformation for the component fieldsAµ (non-abelian
gauge field), λ (a spinor in the adjoint representation) and D (auxiliary scalar field in the
adjoint representation).

As in the abelian case, one can define the constrained (anti-)chiral spinor superfield Wα

(and W̄α̇) by

Wα = − 1
8
D̄2e−2VDαe

2V ,

W̄α̇ = +
1
8
D2e+2V D̄α̇e

−2V . (5.11)

These superfields transform homogeneously under gauge transformations:

Wα → e−2iΛWαe
+2iΛ, W̄α̇ → e−2iΛ†Wαe

+2iΛ† . (5.12)

Once again one can compute the component fields of Wα and W̄α̇ in the WZ gauge. Ex-
plicitly

Wα = − 1
4
D̄2DαVWZ +

1
2
D̄2(VWZDαVWZ)− 1

4
D̄2DαV

2
WZ , (5.13)

and similarly for W̄α̇. After some algebra, the result is the expected non-abelian generali-
sation

Wα = −iλα(y) + θαD(y) + iθβσµνβαFµν(y)

+(θθ)σµ
αβ̇
∇µλ̄β̇(y),

W̄α̇ = iλ̄α̇(y†) + θ̄α̇D(y†)− iθ̄β̇
¯

σµνβ̇α̇Fµν(y†)

−(θ̄θ̄)σ̄µβ̇α̇ ∇µλβ(y†), (5.14)

where, Fµν = ∂µAν −∂νAµ+ i[Aµ, Aν ] is the non-abelian field strength and ∇µ is the gauge
covariant derivative, e.g. ∇µλ̄ = ∂µλ̄+ i[Aµ, λ̄].

Exercise: Show the transformation property (5.12) and work out the component
field expressions (5.14).

6 Wess-Zumino model, supersymmetry breaking

There are some properties that we saw before, but did not take proper notice of, are the
following. First, the supersymmetry variation of the θθθ̄θ̄, i.e. the highest, component of a
scalar superfield

δξd(x) =
i

2
∂µ
(
ξσµλ̄(x)− η(x)σµξ̄

)
(6.1)

is a total (spacetime) derivative. Therefore∫
d4xδξd(x) = 0. (6.2)
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In case of a vector superfield, the variation is

δξD(x) = i∂µ
(
ξσµλ̄(x)− λ(x)σµξ̄

)
. (6.3)

Therefore, for any vector superfield V (x, θ, θ̄)

2κ
∫
d4x

∫
d4θ V (x, θ, θ̄), (6.4)

where κ is a parameter, is invariant under N = 1 supersymmetry transformation. With this
observation, we immediately have a way of constructing actions which are invariant under
(N = 1 global) supersymmetry. As an example, let us consider the chiral superfield Φ(y, θ),
for which Φ†Φ is a vector superfield. Therefore,∫

d4x

∫
d4θΦ†Φ (6.5)

is a supersymmetric action.
Of course, (6.4) with V a vector superfield is also an example of a supersymmetric action.

However, on dimensional ground we see that the parameter κ has mass dimension one, while
the action (6.5) involving Φ†Φ does not require a dimensionful parameter. Moreover (6.4) is
linear in the component fields, while (6.5) is quadratic. Nevertheless, we shall have occassion
to come back to (6.4) later.

Secondly, the supersymmetric variation of the θθ, i.e. again the highest, component of
a chiral superfield Φ

δξF (x) = −
√

2i∂µψ(x)σµξ̄ − ∂µ
(√

2iψ(x)σµξ̄
)

(6.6)

is a also total derivative. Therefore∫
d4x

(∫
d2θΦ(y, θ) +

∫
d2θ̄Φ†(y†, θ̄)

)
(6.7)

is invariant under (N = 1 global) supersymmetry for any chiral superfield Φ.
Consider, for example the chiral superfield Φ2 leading to

m

∫
d4x

∫
d2θΦ2(y, θ) + h.c., (6.8)

where, the complex parameter m has mass dimension one. As before we can, and shall,
consider the effect of the term

λ

∫
d4x

∫
d2θΦ(y, θ) + h.c., (6.9)

with [λ] = M2, later in this lecture.

The advantage of the superfield method lies in the fact that an action written in terms of
superfields in manifestly invariant under supersymmetry transformations. Let us consider
the Wess-Zumino model defined by the lagrangian density8

LWZ =
∫
d4θΦ†Φ−

∫
d2θ

(
1
2
mΦ2 +

1
3
gΦ3

)
+ h.c. (6.10)

8The Wess-Zumino action defines the most general unitary renormalisable supersymmetric theory for a
single chiral superfield.
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When expanded in terms of the component fields, the first term above contains the canonical
kinetic terms for a complex scalar field φ and a Weyl fermion ψ, while the others describe
interactions including Yukawa interactions (see exercise in lecture 4):

LWZ = ηµν(∂µφ∗)(∂νφ) + F ∗F −
(
mφ+ gφ2

)
F

−
(
m∗φ∗ + g∗(φ∗)2

)
F ∗ − iψ̄σ̄µ∂µψ (6.11)

+
1
2

(mψψ +m∗ψ̄ψ̄) + gφψψ + g∗φ∗ψ̄ψ̄.

Notice that there is no term involving the derivatives of F . It is therefore an auxiliary field
with algebraic equation of motion

F ∗ −mφ− gφ2 = 0. (6.12)

This is readily solved and we use this to eliminate F from the action. After eliminating the
auxiliary field, the bosonic part of the action SWZ takes the form

LBWZ = (∂µφ∗)(∂µφ)− V(φ), (6.13)

where the scalar potential

V(φ) = F ∗F = |m|2φ∗φ+ (m∗gφ+mg∗φ∗)φ∗φ+ |g|2(φ∗φ)2. (6.14)

The potential is positive definite. Consequently, the hamiltonian and the total energy are
also postive definite.

The last property is actually a general property of supersymmetric theories. We can
prove this from the supersymmetry algebra (1.14). Explicitly, using

{Q1, Q̄1} = 2P0 + 2P3,

{Q2, Q̄2} = 2P0 − 2P3,

the hamiltonian H ≡ P0 can be expressed as

H =
1
4
(
Q1Q̄1 + Q̄1Q1 +Q2Q̄2 + Q̄2Q2

)
. (6.15)

The expectation value for the energy density in any state |Ψ〉 is thus

〈Ψ|H|Ψ〉 =
1
4

(
||Q̄1|Ψ〉||2 + ||Q1|Ψ〉||2 + ||Q̄2|Ψ〉||2 + ||Q2|Ψ〉||2

)
≥ 0, (6.16)

always positive definite.
This implies that states with vanishing energy density are supersymmetric ground states

of the theory. They are ground states because with zero energy we reach the minimum
possible value of energy, and they are supersymmetric because

〈Ω|H|Ω〉 ⇔ Qα|Ω〉 = 0
Q̄α̇|Ω〉 = 0

, for all α, α̇ = 1, 2. (6.17)
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In other words, supersymmetry is preserved in ground states with zero energy. Conversely,
in ground states with non-zero (positive, as always with supersymmetry) energy, supersym-
metry is spontanously broken.

Coming back to the Wess-Zumino model, let us assume that m and g are real for
simplicity. In this case, the scalar potential is

V(φ) = |F |2 = m2|φ|2 +mg(φ+ φ∗)|φ|2 + g2|φ|4, (6.18)

while the auxiliary field is

F ∗ = mφ+ gφ2 =
(
mA+ g(A2 −B2)

)
+ i (mB + 2gAB) , (6.19)

where, the complex scalar φ = A+ iB is written in terms of two real fields. We see that F
can be made to vanish for

• 〈B〉 = 0 and 〈A〉 = 0,−(m/g), (for m2 > 0);

• 〈A〉 = −(m/2g) and 〈B〉 = ±
(√
−m2/2g

)
, (for m2 < 0).

Since F = 0, (which guarantees that the potential V vanishes), supersymmetry is unbroken
in the Wess-Zumino model. The supersymmetric vacuum states are parametrised by the
above choices of vacuum expectation values for the scalar fields.

The superpotential of the Wess-Zumino model

W (Φ) =
1
2
mΦ2 +

1
3
gΦ3 (6.20)

goes to −W (Φ) (modulo an unimportant constant shift) under the transformation

Φ→ −m
g
− Φ

which interchanges the two ground states. However, the sign of W (Φ) can be rotated away
by a UR(1) symmetry

θ → e−iαθ ⇒ d2θ → e+2iαd2θ. (6.21)

(Note that the above is unlike a commuting variable x for which x and dx transform in
the same way. Recall that for anti-commuting variables, differentiation and intrgration are
equivalent operations.) Suppose under this rotation

Φ(x, θ)→ Φ̃(x, θ) = e2inαΦ(x, e−iαθ), (6.22)

i.e. Φ has charge n. The condition that the action remains invariant, (
∫
d2θW (Φ) =∫

d2θW (Φ̃)), implies that the superpotential must have charge +2 under UR(1) rotation

W (Φ)→ e2iαW (Φ). (6.23)

For α = π/2, this is a discrete Z4 symmetry, (under which the fermions are multiplied by
a factor of i), relating the two ground states. However since a 2π rotation changes the sign
of fermions, a Z2 ⊂ Z4 remains unbroken.
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It is not possible to break supersymmetry spontaneously in the Wess-Zumino model
involving a single chiral superfield. It turns out that for this one needs at least three chiral
superfields. Before exhibiting this model, let us write the general form of a Wess-Zumino
type action involving many chiral superfields

S =
∫
d4x

[∫
d4θ δijΦ

†
iΦj −

(∫
d2θW ({Φi}) + h.c.

)]
. (6.24)

The superpotential

W ({Φi}) = w0 + λiΦi +mijΦiΦj + gijkΦiΦjΦk + · · · (6.25)

is a general functional of the chiral superfields only, i.e. it is a functional only of the Φi’s
and not the Φ†i ’s. In other words, W (Φ) is an analytic function of Φ.

The bosonic potential in this case is

V ({φi, φ∗i }) =
∑
i

|Fi|2 =
∑
i

∣∣∣∣∣
[
δW

δΦi

]
Φi=φi

∣∣∣∣∣
2

. (6.26)

In fact the name superpotential for W (Φ) derives from its close relation to the (bosonic)
potential. Let us stress once again that the superpotential is an analytic function of the
chiral superfields Φi. Analytic functions are also called holomorphic. Therefore the super-
potential is a holomorphic function. This is not only true of the bare lagrangian, but also
of the effective one, (if supersymmetry is to remain unbroken). There is, however, some
subtlety in the interpretation of the last statement, and we shall return to this point later.
At that time, we shall see the power of requirement of analyticity (or holomorphy), and
how, for many theories, it is sufficient to determine the effective superpotential exactly and
study its consequence on the dynamics of the theory.

Let us now study a model of spontaneous supersymmetry breaking. Consider the la-
grangian (first proposed by O’Raifeartaigh[12] in 1975):

L =
∫
d4θ

3∑
i=1

Φ†iΦi −
∫
d2θ

(
λΦ1 +mΦ2Φ3 +

1
2
gΦ1Φ2

2

)
+ h.c. (6.27)

Notice that there is a term linear in Φ. This is of the form that was mentioned in the
beginning of this lecture.

The algebraic equations of motion for the auxiliary fields are

F ∗1 = λ+
1
2
gφ2

2,

F ∗2 = mφ3 + gφ1φ2, (6.28)
F ∗3 = mφ2.

Clearly, F ∗1 and F ∗3 cannot be made to vanish simultaneously. The resulting scalar potential
is

V = |F1|2 + |F2|2 + |F3|2

= λ2 + (m2 + λg) (Re φ2)2 + (m2 − λg) (Im φ2)2

+m2|φ3|2 + 2mg(φ1φ2φ
∗
3 + φ∗1φ

∗
2φ3)

+g2|φ1|2|φ2|2 +
1
4
g2
(
|φ2|2

)2
. (6.29)
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This is positive as long as m2 ≥ λg. The potential (6.29) is minimised by choosing

〈φ2〉 = 0, 〈φ3〉 = 0, 〈φ1〉 = unconstrained.

The value of the potential at the minimum is

V(〈φ1〉) = λ2,

a positive definite quantity. Therefore supersymmetry is spontaneously broken.

Exercise: Compute the masses of the bosons and fermions in the O’Raifear-
taigh model. There is at least one massless fermion when supersymmetry is
spontaneously broken. This is analogous to the massless boson (Goldstone mode)
that appears when a global symmetry is spontaneously broken, and is called a
goldstino).

Also show that the sum of the mass-square of the bosons equal to that of the
fermions. This too is a generic feature of supersymmetric models, the property
being manifest in vacua with unbroken supersymmetry.

For λ = 0, there is no supersymmetry breaking, but this case illustrates another impor-
tant feature of supersymmetric models. Namely, we have

V(〈φ1〉, 〈φ2〉 = 0, 〈φ3〉 = 0) = 0 (6.30)

for arbitrary values of 〈φ1〉. There are infinitely many supersymmetric vacua parametrised
by the vacuum expectation value of the field φ1. Thus the parameter space that labels
supersymmetric vacua is the complex 〈φ1〉-plane (see Fig.1(a)).

Figure 1: Moduli space of supersymmetric vacua (a) for potential (6.30) and (b) for super-
potential (6.31) with singularity at the origin.

Let us further restrict to m = 0, i.e. we consider the simple model of two chiral
superfields Φ1 and Φ2 with superpotential

W (Φ1,Φ2) =
1
2

Φ1Φ2
2. (6.31)

This corresponds to the bosonic potential

V(φ1, φ2) = g2|φ1|2|φ2|2 +
1
4
g2
(
|φ2|2

)2
.
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We see that V(φ1, φ2) vanishes for 〈φ2〉 = 0 with no condition on 〈φ1〉. In the vacuum
labelled by 〈φ1〉 the field φ2 gets an effective mass

m2 =
√

2g|〈φ1〉|.

The origin of the parameter space is therefore a special point — the mass of the field φ2

vanishes there. This is a singular point (or a singularity) in the sense that a heavy field
becomes massless here.

The name for the parameter space that labels supersymmetric vacua is the moduli space
of vacua. Fig.1(b) is the moduli space of vacua for the model described by (6.31).

Exercise: Analyse the behaviour of the moduli space of vacua for a theory of
three chiral superfields Φ1, Φ2 and Φ3 with superpotential

W (Φ1,Φ2,Φ3) = gΦ1Φ2Φ3.

The moduli space is shown in Fig.2. It consists of three branches meeting at a
singular point.

Figure 2: Moduli space of supersymmetric vacua described by the superpotential W =
gΦ1Φ2Φ3. The origin is a singular point.

7 Lagrangians of supersymmetric gauge theories

In the last lecture, we saw how to write actions for chiral superfields leading to supersym-
metric actions involving scalars and spin-half fermions. Constructing an action for a gauge
theory is also along expected lines. We have the field strength supermultiplet which is a
chiral spinor superfield Wα such that D̄α̇Wβ = 0. Moreover, (in the non-abelian case9), it
transforms homogeneously

Wα → e−2iΛWαe
+2iΛ.

Therefore,
tr (WαWα)→ tr

(
e−2iΛWαWαe

+2iΛ
)

= tr (WαWα)
9In the abelian case, Wα is gauge invariant and no trace need to be taken.
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is both gauge and Lorentz invariant. Further, since this is a chiral superfield, we can get a
gauge invariant candidate term for the lagrangian by integrating over θ’s:

∫
d2θ tr (WαWα).

In terms of the component fields∫
d2θ tr (WαWα) = tr

(
D2 − 1

2
FµνFµν −

i

4
FµνFρσε

µνρσ

−2iλασµ
αβ̇
∇µλ̄β̇

)
.

The problem with the above is that there is no dependence on the gauge coupling. Also the
FF̃ term is imaginary. Both these problems are solved by defining the lagrangian

LSYM =
1

8π
Im
[
τ

∫
d2θ tr (WαWα)

]
, (7.1)

where,

τ =
θYM
2π

+ i
4π
g2
. (7.2)

Explicitly, in terms of component fields, the above lagrangian reads as follows

LSYM =
1
g2

tr
(
D2 − 1

2
FµνFµν − iλασµαβ̇∇µλ̄

β̇
)

− θYM
32π2

tr
(
FµνF̃

µν
)
, (7.3)

where, F̃µν = 1
2ε
µνρσFρσ is the dual field strength.

Notice that in addition to the gauge fields Aµ, the supersymmetric Yang-Mills theory
contains ‘matter’ fields: fermions λ and auxiliary fieldsD, both in the adjoint representation.
The fermions λa are supersymmetric partners of the gauge fields, and are called gluinos or
gauginos.

As we had mentioned in the last lecture, it is possible to add a term

2κ
∫
d4x

∫
d4θV (x, θ, θ̄) = κ

∫
d4xD(x).

However, this is gauge invariant only for an abelian vector superfield V . Therefore such a
term may be added only to the lagrangian of the supersymmetric Maxwell theory. It turns
out that this term leads to spontaneous breaking of supersymmetry[13]. The parameter κ
is known as the Fayet-Iliopoulos parameter.

After having constructed actions for chiral superfields (matter) and vector superfields
(gauge fields), we shall now discuss the coupling of matter to gauge fields. We shall begin
with the coupling of matter to an abelian gauge field.

The first point to notice is that we cannot put the matter fields in the gauge supermulti-
plet. This is because all fields in the this multiplet must belong to the same representation
as the gauge fields, i.e. in the abelian case they must all be charge neutral and belong to
the adjoint in the non-abelian case.

Consider the chiral superfields Φi, i = 1, 2, · · · , n. Under a global U(1) rotation

Φi → Φi
′ = e−2iqiλΦi,
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where, qi and λ are real constants. (In particular, D̄α̇qi = 0, D̄α̇λ = 0. Therefore, Φi
′ is

also a chiral superfield.) The Wess-Zumino type lagrangian

L =
∫
d4θΦ†iΦi −

∫
d2θ (mijΦiΦj + gijkΦiΦjΦk + h.c.)

is invariant under this rotation if

mij = 0 whenever qi + qj 6= 0,
gijk = 0 whenever qi + qj + qk 6= 0.

If we want to gauge this symmetry, i.e. make λ a function of x, since D̄α̇λ(x) 6= 0, we must
promote the function λ(x) to a chiral superfield Λ(x, θ) (D̄α̇Λ = 0) such that Φi

′ = e−2iqiΛΦi

is again a chiral superfield. This makes the superpotential gauge invariant. However, the
kinetic term

Φ†iΦi → Φ†ie
2iqi(Λ

†−Λ)Φi

is no longer invariant. This is familiar from gauging of non-supersymmetric theories. In
order to restore invariance under local phase rotations, we need to introduce a vector su-
perfield V (x, θ, θ̄) such that

eV → eV
′

= e−2iΛ†eV e2iΛ

i.e, V → V ′ = V + 2i(Λ− Λ†). (7.4)

The gauge invariant lagrangian is then

L =
1
2

∫
d2θWαWα +

∫
d4θΦ†ie

2qiV Φi

−
∫
d2θ (mijΦiΦj + gijkΦiΦjΦk) + h.c. (7.5)

Due to the presence of the exponential in the lagrangian, it is not clear if the theory is
renormalisable. We can, however, evaluate it in the Wess-Zumino gauge where

Φ†e2qVWZΦ = Φ†
(
1 + 2qVWZ + 2q2V 2

WZ

)
Φ.

In components ∫
d4θΦ†e2qVWZΦ = ηµν (∇µφ)∗ (∇νφ)− iψ̄σ̄µ∇µψ

+i
√

2q
(
φ∗λψ − φλ̄ψ

)
(7.6)

+ |F |2 + qDφ∗φ,

where,

∇µφ = ∂µφ+ iqAµφ

∇µψ = ∂µψ + iqAµψ.

The supersymmetric generalisation of QED requires at least two chiral superfields Φ+

and Φ− so that we may write a gauge invariant mass term. Therefore, we have

chiral superfields Φ± → e∓2ieΛΦ±,

vector superfield e2V → e−2ieΛ†e2V e2iΛ.
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The lagrangian in superfields is

LSQED =
1
2

∫
d2θWαWα +

∫
d4θ

(
Φ†+e

2eV Φ+ + Φ†−e
−2eV Φ−

)
−m

(∫
d2θΦ+Φ− +

∫
d2θ̄Φ†+Φ†−

)
, (7.7)

and in components

LSQED =
1
2
D2 − 1

4
FµνF

µν − iλ̄σ̄µ∂µλ

+ηµν(∇µφ+)∗(∇νφ+) + ηµν(∇µφ−)∗(∇νφ−)
−iψ̄+σ̄

µ∇µψ+ − iψ̄−σ̄µ∇µψ− +m
(
ψ+ψ− + ψ̄+ψ̄−

)
+i
√

2e
(
φ∗+λψ+ − φ+λ̄ψ̄+ − φ∗−λψ− − φ−λ̄ψ̄−

)
−m

(
φ+F− + φ−F+ + φ∗+F

∗
− + φ∗−F

∗
+

)
+|F+|2 + |F−|2 + eD

(
φ∗+φ+ − φ∗−φ−

)
. (7.8)

Exercise: Re-express the above lagrangian in terms of the Dirac spinor ΨD =(
ψ+

ψ̄−

)
. What are the additional fields in the lagrangian compared to QED?

Notice that the lagrangian of supersymmetric QED (7.8) contains two complex auxiliary
fields F± and one real auxiliary field D. Their (algebraic) equations of motions are

D + e
(
φ∗+φ+ − φ∗−φ−

)
= 0,

F ∗± = mφ∓.

(The RHS of the first equation above is−κ in case the Fayet-Iliopoulos term (6.4) is present.)
These equations can be solved to determine the classical scalar potential

V(φ±) =
(
|F+|2 + |F−|2

)
+

1
2
D2

= m2
(
|φ+|2 + |φ−|2

)
(7.9)

+
1
2
e2
(
|φ+|2 − |φ−|2

)2
.

The two terms above are called the F - and D-term respectively.
In the massless case, we only have the D-term. Therefore, there are infinitely many

degenerate vacua labelled by, upto gauge equivalence,

〈φ+〉 = a = 〈φ−〉,

for any complex number a.
In any vacuum with a 6= 0, gauge symmetry is broken by the (super) Higgs mechanism.

The gauge superfield becomes massive by absorbing one chiral superfield degree of freedom
from the matter. One of the chiral superfield degrees of freedom, however, still remains
massless. A gauge invariant description of this massless degree of freedom can be given in
terms of

X = Φ+Φ−. (7.10)
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In the vacuum, 〈X〉 = a2 is an arbitrary complex number. This means that there is no
superpotential for the chiral superfield X, at least at the classical level:

Wcl(X) = 0.

The above is known as the D-flatness condition.
The vacuum expectation value 〈X〉 gives a gauge invariant parametrisation of the moduli

space of classical vacua. This space has a singularity at the origin, i.e. at 〈X〉 = 0,
corresponding to the fact that at this point the U(1) gauge symmetry is unbroken, and all
the original microscopic degrees of freedom are massless there (see Fig.1(b)).

The degeneracy of the classical vacua is accidental. There is no symmetry that relates
different vacua parametrised by different choices for a, indeed they are inequivalent theories.
This degeneracy may therefore be lifted in the quantum theory by a dynamically generated
superpotential Weff(X).

Recall that X is gauge invariant because φ± carry equal and opposite charges

φ± → e∓ieλφ± ⇒ X → X.

This freedom in defining X can formally be extended to a complexification of the gauge
group UC(1) ≈ C∗, under which

φ+ → ρφ+, φ− → ρ−1φ−; (ρ ∈ C∗).

(In the above, we have extended the gauge parameter to take non-zero complex values.) The
moduli space of vacua was described by setting the (D-term of the) classical superpotential
to zero, and quotienting by the gauge symmetry. This turns out to be exactly equivalent to
quotienting by the compexified gauge group. Thus, the space of chiral superfields modulo
the complexified gauge group may be parametrised by the gauge invariant polynomials of
chiral superfields[14]. (In a more general situation, there may be relations between the
possible gauge invariant polynomials.)

8 Supersymmetric QCD — classical theory

Much of what we learnt in Lecture 7 generalises to the case of non-abelian gauge theories.
In the present lecture, we shall discuss that generalisation.

Consider a chiral superfield Φ = {Φi} which belong to some representation R of a Lie
algebra g:

Φi → Φi
′ =

(
e−2iΛ

)
i

j
Φj =

(
e−2iΛataji

)
Φj , (8.1)

where, ||taij || with a = 1, 2, · · · ,dim g, i, j = 1, 2, · · · ,dim R, are matrices in the representa-
tion R. The gauge invariant kinetic term for the field Φ is(

Φ†e2V Φ
)

= Φ†i
(
e2V ata

)
i

j
Φj = trR

(
e2V ataΦΦ†

)
.

This is gauge invariant because the tensor product of the representations R, its conjugate
R̄ and the adjoint contains the singlet.

More generally the lagrangian of a Wess-Zumino type model interacting with a non-
abelian gauge field is

L =
1

8π
Im

[
τ

∫
d2θ tr (WαWα)

]
+
∫
d4θ

(
Φ†Ie

2V ΦI

)
−
∫
d2θ (mIJΦIΦJ + gIJKΦIΦJΦK) + h.c. (8.2)

33



The ‘mass’ term is allowed only when RI = R̄J . For a single chiral superfield, this in only
possible for SU(2) (of all SU(n)’s). Similarly the gIJK term is allowed if RI ⊗ RJ ⊗ RK
contains the singlet. For example, a single chiral superfield in the doublet of SU(2) can
have a mass term but not a cubic self coupling.

Let us now look at the D-terms in the lagrangian

LD =
1

2g2
trD2 + φ∗Dφ

=
1

2g2
DaDb tr (tatb) +Daφ∗itaji φj

=
1

2g2
C(R)DaDa +Da trR (ta(φφ∗)) , (8.3)

where we have used the normalisation (5.8). The equation of motion for Da is therefore

Da = − g2

C(R)
trR (ta(φφ∗)) , (8.4)

which leads to a scalar potential

VD =

[
g2

C(R)
trR (ta(φφ∗))

]2

. (8.5)

This potential must vanish in a vacuum which preserves supersymmetry. Thus, for unbroken
supersymmetry, we require

trR (ta(φφ∗)) = 0, (8.6)

the D-flatness condition.

The supersymmetric version of QCD that we shall consider has

• Nf chiral superfields in the fundamental representation Nc of the gauge group SU(Nc):

QAi , A = 1, 2, · · · , Nf ; i = 1, 2, · · · , Nc.

(The colour index will not always be displayed explicitly.) There is a global U(Nf )
flavour symmetry between the Q’s which transform in the Nf representation. The
conjugate anti-chiral superfield Q† belongs to Nf of U(Nf ) and Nc of SU(Nc). We
shall think often think of ||QAi || and ||Q†ı̃

Ã
|| as Nf ×Nc matrices.

• Nf chiral superfields Q̃Ã in the anti-fundamental Nc of the gauge group SU(Nc). These
transform as Nf of the flavour group. The corresponding conjugate fields denoted by
Q̃†.

Their dynamics is specified by the lagrangian

LSQCD =
1

8π
Im

[
τ

∫
d2θ tr (WαWα)

]
+
∫
d4θ

[
Q†
Ã
e2VQA + Q̃Ãe

2V Q̃†A
]

(8.7)

−
∫
d2θmAQ

AQÃ −
∫
d2θ̄ m∗A Q̃

†AQ†
Ã
.
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This theory has a global U(Nf ) flavour symmetry. In the massless case, mA = m∗A = 0
there are actually two flavour rotations corresponding to the fact that Q and Q̃ can be
transformed independently in flavour space, leading to a U`(Nf )×Ur(Nf ) global symmetry
for the classical theory. In the following, we shall consider the massless case.

The D-flatness conditions are

Nf∑
A=1

[
trNc

(
taφQAφ

∗
QA

)
− trNc

(
taφ∗

Q̃A
φQA

)]
= 0, (8.8)

for all a = 1, 2, · · · , N2
c − 1. Since the representations Nc and Nc are isomorphic, the two

traces are the same and the D-flatness conditions reduce to

Nf∑
A=1

trNc

[
ta
(
φQAφ

∗
QA − φ

∗
Q̃A
φQA

)]
= 0, for all a.

By Schur’s lemma, this is possible when

φQAφ
∗
QA − φ

∗
Q̃A
φQ̃A = c1Nc×Nc , (8.9)

where, c is a constant independent of A.
To characterise classical vacua, we need to differentiate between two cases

• Nf < Nc:
By a gauge and flavour rotation, we can ‘diagonalise’10 φQ. This implies that the
constant on the RHS of (8.9) must vanish. Upto gauge and flavour rotations, the
solution to the D-flatness conditions are therefore given by

〈φQ〉 = 〈φ∗
Q̃
〉 =


a1 0 · · · 0 0 · · · 0
0 a2
...

. . .
0 aNf 0 · · · 0

 . (8.10)

The gauge invariant composite superfields whose lowest components parametrise the
moduli space of vacua are

MA
B̃ = QAQ̃B̃, A, B̃ = 1, 2, · · · , Nf , (8.11)

called the meson superfields. The vacuum expectation value of 〈MA
B̃
〉 = |aA|2δAB̃.

When this is non-zero, i.e. 〈MA
B̃
〉 6= 0, the gauge group is broken. The most generic

behaviour is SU(Nc) → SU(Nc − Nf ). (Notice that given the vev of M , one can
determine, upto gauge and flavour rotations, the vevs of Q and Q̃ and vice versa.)

• Nf ≥ Nc:
An arbitrary A-independent constant is now allowed, so upto gauge and flavour sym-

10Recall that φQ is an Nf ×Nc matrix, so the diagonalisation refers to the Nf ×Nf block.
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metry, a solution to the D-flatness conditions is

〈φQ〉 =



a1 0 · · · 0
0 a2
...

. . .
0 aNc
0 0
...

...
0 0


,

〈φ∗
Q̃
〉 =



ã1 0 · · · 0
0 ã2
...

. . .
0 ãNc
0 0
...

...
0 0


, (8.12)

together with the restriction |aA|2 − |ãA|2 = c (a constant independent of A).

Once again we have the meson chiral superfields

MA
B̃ = QAQ̃B̃,

||〈MA
B̃
〉|| =


a1ã1

a2ã2

. . .
aNc ãNc

 . (8.13)

This time, however, it is not possible to determine a and ã from the knowledge of
〈M〉. Moreover, there are new gauge invariant composite operators. For example, in
the case Nf = Nc, there are two such operators

B = εA1A2...ANc
QA1

1 · · ·Q
ANc
Nc

=
1
Nc!

εA1A2...ANc
εB1B2...BNcQA1

B1
· · ·QANcBNc

,

B̃ = εÃ1Ã2...ÃNc
Q̃Ã1

1 · · · Q̃
ÃNc
Nc

(8.14)

=
1
Nc!

εÃ1Ã2...ÃNc
εB̃1B̃2...B̃Nc Q̃Ã1

B̃1
· · · Q̃ÃNc

B̃Nc
,

called the baryons. The moduli space of vacua is parametrised by 〈M〉, B and B̃.
However, they are not all independent, but related through the relation

det ||〈M〉|| = BB̃. (8.15)

Likewise, e.g. for Nf = Nc + 1, we have 2Nf baryons

BA = εAA1A2...ANc
QA1

1 · · ·Q
ANc
Nc

B̃Ã = εÃÃ1Ã2...ÃNc Q̃1
Ã1
· · · Q̃Nc

ÃNc
, (8.16)
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which satisfy the following relations

(det M)
(
M−1

)B̃
A
−BAB̃B̃ = 0,

MA
B̃
BA = MA

B̃
B̃B̃ = 0. (8.17)

This pattern is easily generalisable to higher values of Nf .

Now we would like to know how the quantum theory behaves. We shall approach this
question by analysing the low energy effective action involving the degrees of freedom which
are light at the energy scale in which we are interested.

We shall assume that supersymmetry is unbroken, (i.e. we shall work above the possible
supersymmetry breaking scale). This symmetry of effective action will be made manifest
by working in terms of superfields. Matter fields are combined into chiral superfields Φi

(and their conjugates Φ†i ), while gauge field is described by real/vector superfield V or its
descendent chiral spinor superfield Wα.

As we have seen, the moduli space of classical vacua of a theory is parametrised by
the vacuum expectation values of (the lowest componenent of) the chiral superfields. The
classical superpotential for these fields either vanish, or are determined from the classical
lagrangian. We would like to know whether quantum corrections generate an effective
(super)potential or change its form from the classical one.

Let us write the effective superpotential as∫
d2θWeff({Φi}, {gI},Λ),

where {gI} are the coupling constants and Λ is the dynamically generated QCD scale.
Recall that Λ is determined from

Λb0 = µb0 exp

(
− 8π2

g2(µ)

)
,

where b0 = 3C2(G)− C2(R) is the coefficient in the lowest order β-function

β(g) ≡ µdg
dµ

= − b0
16π2

g3.

However, in supersymmetric gauge theories, it is more convenient to complexify Λ by defining

Λb0 = µb0 exp

(
− 8π2

g2(µ)
+ iθYM

)
= µb0 exp (2πiτ(µ)) . (8.18)

(See (7.2) for the definition of τ .)
We have already noticed that the superpotential must be a holomorphic function of

the chiral superfields Φi, (no explicit dependence on Φ†i ). Seiberg[16] proposed that the
dependence of Weff on {gI} (and Λ when applicable) is also holomorphic. This can be
motivated by thinking of the couplings {gI} as the vacuum expectation value of some
background chiral superfields GI(= gI + · · ·). This conjecture is further motivated from
string theory where the coupling constants are actually vacuum expectation values of some
chiral superfields. However, within the context of field theory alone its justification is a
posteriori.
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Moreover, if the theory possesses some symmetry in the absence of the superpotential W ,
i.e. the symmetry is broken by the terms in W , then one can formally recover the symmetry
by assigning suitable transformation laws on {gI} and Λ, such that Weff({Φ}, {gI},Λ) is
invariant under the combined transformations of {Φ}, {gI} and Λ.

With these assumptions, it turns out that it is often possible to determine the effective
superpotential exactly.

9 Quantum corrections & effective action

In the previous lecture we sketched an argument, (due to Seiberg), to determine the effective
superpotential of a quantum theory. Let us recall that strategy.

1. Ascertain all the symmetries of a theory in the absence of the superpotential. Assign
suitable (formal) transformation properties to the coupling constants such that the
symmetry remains valid even in the presence of the superpotential.

2. Regard the quantum corrected effective superpotential to be a holomorphic function
not only of the light chiral superfields, but also of the coupling constants {gI} (and Λ
in the case of supersymmetric QCD).

3. The effective superpotential should match the results of perturbation theory in the
appropriate limit.

These requirements are often stringent enough to determine the effective superpotential.
The superpotential so determined will also include non-perturbative corrections.

Parenthetically, let us add that the kinetic term of the gauge fields∫
d2θ Im

(
τeff({Φ}, {gI},Λ)WαWα

)
is also holomorphic. More precisely, τeff is holomorphic in its arguments. However, in many
cases it so happens that the gauge symmetry is broken and the theory is in a Higgs or
a confining phase. In case gauge symmetry remains unbroken and one is in the Coulomb
phase, the same arguments may be applied to determine τeff.

As an illustration, let us apply these ideas to determine the quantum effective superpo-
tential of the Wess-Zumino model (6.10). The classical superpotential (6.20) is

W (Φ) =
1
2
mΦ2 +

1
3
gΦ3.

There is a U(1) R-symmetry that we encountered earlier in eqns.(6.21) and (6.23). It rotates
the fermionic component of the superspace

θ → θ′ = e−iαθ,

and under this transformation the action is invariant if

W (Φ)→ e2iαW (Φ).
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Since the superpotential has R-charge +2, Φ, m and g transform under UR(1) as follows:

Φ(x, θ) → Φ(x, e−iαθ)
m → e2iαm (9.1)
g → e2iαg.

The kinetic term in (6.10) is also invariant another U(1) transformation — let us call it
S-symmetry:

Φ(x, θ)→ eiβΦ(x, θ). (9.2)

The superpotential (6.20) breaks this invariance. However, we can formally recover it by
assigning the following transformation rules to the couplings

m → e−2iβm,

g → e−3iβg. (9.3)

We now demand that Weff is invariant under both UR(1) as well as US(1), and also that it
is holomorphic in m and g (and of course Φ). (In case m and g are real, we shall formally
regard them as complex and set them to their real values at the end.) The most general
form of Weff consistent with these requirements is

Weff(Φ,m, g) = gambΦc R−→ eiα(2a+2b)Weff(Φ,m, g)
S−→ eiα(−3a−2b+c)Weff(Φ,m, g).

Invariance under the two U(1)’s determines (say) a and b in terms of c. The most general
form Weff is then

Weff(Φ,m, g) =
∞∑
n=0

Ang
n−2m3−nΦn

= mΦ2
∞∑
n=0

An

(
gΦ
m

)n
(9.4)

= mΦ2 f

(
gΦ
m

)
, (9.5)

where, An are arbitrary constant coefficients and f(·) is an arbitrary function defined by
the Taylor series above.

It remains to determine the function f , or equivalently the coefficients An. To that end,
notice that for small values of g, perturbation theory is applicable. We compare this with
the Taylor series

Weff
g→0
= mΦ2

(
A0 +A1

gΦ
m

+
∞∑
n=2

An

(
gΦ
m

)n)
to find that A0 = 1/2 and A1 = 1/3. It follows from the properties of superspace Feynman
rules11 that the higher terms in the sum come from the tree level process shown in Fig.3.
(Loops are not possible as it would increase powers of g but not of Φ.)

11A complete discussion of superspace perturbation theory is beyond the scope these lectures. However,
all we need to know for this is the fact that the propagator for chiral superfield at zero momentum 〈ΦΦ〉(k =
0) ∼ m−1.
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Figure 3: Superspace Feynman diagram contributing to the sum in eqn.(9.4).

For n ≥ 2, the Feynman diagram in Fig.3 is not one particle irreducible, and hence it
cannot contribute to the effective superpotential. Therefore the effective superpotential is
exactly the same as the classical superpotential (6.20)

Weff(Φ,m, g) = W (Φ,m, g) =
1
2
mΦ2 +

1
3
gΦ3.

In other words, the superpotential of the Wess-Zumino model is not renormalised by quan-
tum (and non-perturbative) corrections. This important result, first derived in perturbation
theory, is called the non-renormalisation theorem.

There is, however, a caveat to the above argument. It was already known, (through
the analysis of perturbation theory of superfields), that in case there are massless chiral
superfields, the non-renormalisation theorem is invalidated. Indeed it was found[17] that
the effective potential in the Wess-Zumino model with m = 0 gets a contribution g3(g∗)2Φ3

which comes from the two-loop diagram shown in Fig.4. This is clearly non-holomorphic.

Figure 4: A two loop diagram which gives a non-holomorphic contribution to the 1PI
effective superpotential. (A solid line denotes a ΦΦ propagator while a dot-dashed line
stands for a Φ†Φ or a ΦΦ† propagator.)

Similar violation of holomorphy was found in SQCD at two loops. In this case the
problem is even more serious due to supersymmetric relation between the stress-tensor Tµν
and the axial current j5

µ. The latter does not receive any correction beyond one loop. A
resolution to this apparent paradox was suggested by Shifman and Vainshtein[18], who
argued that one needs to distinguish between two commonly used notions of effective action
(or effective potential).
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• From the microscopic lagrangian L({φ}), one defines a (Euclidean) generating func-
tional for the correlation functions

Z[{J}] = e−F [{J}]

=
∫

[Dφ] exp
(
−
∫
d4x

(
L[{φ}] +

∑
Jφ
))

,

which is a functional of the external sources {J}. A Legendre transform of this
generating functional is a functional of the effective fields (called classical fields) {φcl}

Γ[{φcl}] = −F [{J}]−
∑∫

d4xJ(x)φcl(x),

where

δ

δJ(x)
F [{J}] = −φcl(x),

δ

δφcl
Γ[{φcl}] = −J(x).

Γ[{φcl}] generates all the one particle irreducible graphs of the theory, and is called
the (1PI) effective action. Notice that in defining this effective action one integrates
out all the degrees of freedom.

• The alternative notion is that of a Wilsonian effective action. To define this, let us
first Fourier transform to momentum space {φ(x)} → {φ(k)}. Now divide the degrees
of freedom into low energy and high energy modes12

φ(k) = φ<(k) + φ>(k),

where

φ<(k) =

{
φ(k) for µ ≤ |k| ≤MUV ,
0 for 0 ≤ |k| < µ,

φ>(k) =

{
0 for µ ≤ |k| ≤MUV ,
φ(k) for 0 ≤ |k| < µ,

where MUV is some UV cut-off. The Wilsonian effective action is defined via∫
[Dφ] e−S[{φ}] =

∫ ∏
k

[Dφ<(k)]
∫ ∏

k

[Dφ>(k)] e−S[{φ}]

=
∫ ∏

0≤|k|<µ
[Dφ<(k)] exp (−SW [{φ<}])

Thus in the Wilsonian effective action, one only integrates over the high energy degrees
of freedom. In particular the IR region is excluded from the integrals.

Since the violation of holomorphy comes from the IR region, the Wilsonian effetcive
action is free of this problem, while the 1PI effective action may, (and as we saw in general it
so does), suffer from a holomorphic anomaly. Seiberg’s arguments are therefore applicable

12This is really meaningful in Euclidean continuation.
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to the Wilsonian effective action. (However, when there is no massless particle, the two
notions are almost identical.) There are other limitations of the 1PI effective action. For
example, the source term added to the superpotential may lead to supersymmetry breaking.
(See Ref.[15] for such subtleties.)

Finally we are ready to discuss quantum corrections to massless supersymmetric QCD.
To this end we need to determine the global symmetries of the theory. Recall from the last
lecture that when m = 0, there are two independent flavour symmetry

U`(Nf )×Ur(Nf ) ≈ SU`(Nf )× SUr(Nf )×U`(1)×Ur(1)
≈ SU`(Nf )× SUr(Nf )×UB(1)×UA(1),

where UB(1) and UA(1) are the diagonal and anti-diagonal parts of the two U(1) subgroups
respectively. The conserved charge arising from UB(1) is called the baryon number, and
this is a good symmetry of the quantum theory. The axial UA(1) on the other hand, acts
oppositely on the left- and right-moving quarks, and is anomalous. We shall normalise so
as to assign baryon number +1 (respectively −1) to the superfields Q (Q̃). The various
U(1) quantum numbers of the quark superfields are as follows:

Q Q̃ Q† Q̃†

L +1 0 −1 0
R 0 −1 0 +1
B +1 −1 −1 +1
A +1 +1 −1 −1

The anomaly of the axial UA(1) leads to a shift of the θ-parameter: θYM → θYM − nα,
where n is the coefficient of the anomaly term in the conservation law, or in other words,
the number of fermion zero modes contributing to the anomaly. In this case, n = 2Nf ,
which leads to

exp(2πiτ) A→ e2iNfα exp(2πiτ).

In addition, we have the R-symmetry of supersymmetry discussed in lectures VI and
the present one. There is no superpotential, (we are consideing the massless case13), the
superfields Q and Q̃ have zero R-charge. If we write

Q = φQ + θqL + · · · , Q̃ = φQ̃ + θq̃L + · · · ,

the UR(1) transformation properties are as follows (see eqn.(6.22)):

φQ → φQ, φQ̃ → φQ̃,

qL → e−iαqL, q̃L → e−iαq̃L,

λ→ eiαλ.

This symmetry is also anomalous, leading to

exp(2πiτ) R→ e2i(Nc−Nf )α exp(2πiτ).
13The m 6= 0 case can be thought of as arising from a Higgs mechanism. This happens naturally if the

N = 1 supersymmetric theory is embedded in the N = 2 theory, which has a superpotential term Q̃ΦQ,
where Φ is the Higgs superfield valued in the adjoint.
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The two anomalous U(1) symmetries may be combined to an anomaly free UR(1), the
generator R of which is

R = R+
Nf −Nc

Nf
A. (9.6)

The following table shows the relevant symmetry properties of the various fields.

Field Flavour UB(1) UA(1) UR(1) UR(1)
L-quark qL (Nf ,1) +1 +1 −1 − Nc

Nf

squarkφQ (Nf ,1) +1 +1 0 Nf−Nc
Nf

R-quark qR (1,Nf ) −1 +1 −1 − Nc
Nf

squarkφQ̃ (1,Nf ) −1 +1 0 Nf−Nc
Nf

gluinoλ (1,1) 0 0 +1 +1
mesonMA

B̃
(Nf ,Nf ) 0 +2 0 2 Nf−Nc

Nf

scale Λ (1,1) 0 − 2Nf
3Nc−Nf

2Nc−2Nf
3Nc−Nf 0

In the above we have used the relation (8.18) between the QCD scale Λ and the combination
τ of the coupling constant g and the θ-angle.

At present we are discussing the case Nf < Nc — the only gauge invariant composite
fields are the mesons.

The meson superfield matrix MA
B̃

transforms as (Nf ,Nf ) under global flavour symmetry.
However, the effective superpotential ought to be a flavour singlet and hence can only be a
(holomorphic) function of detM . It can also depend (holomorphically) on τ or equivalently,
the complexified QCD scale Λ. We therefore start with

Weff(M,Λ) = (detM)a Λb

and require that Weff has the right U(1) charges. This fixes a and b:

Weff(M,Λ) = CNfNc

(
Λ3Nc−Nf

detM

)1/(Nc−Nf )

, (9.7)

where CNfNc is a constant which cannot be determined by the arguments used so far. It
turns out14 that

CNfNc = Nc −Nf . (9.8)

Notice that the effective superpotential (9.7) has the correct (mass) dimension. We should
also add that the superpotential is non-perturbative and hence does not violate any pertur-
bative non-renormalisation theorem.

Let us analyse the behaviour of this superpotential. In order to find the supersymmetric
vacua, we set the F -term to zero. The F -term

F ∗AB =
∂

∂MAB
Weff (9.9)

= (Nc −Nf )

(
Λ3Nc−Nf

detM

)1/(Nc−Nf ) (
M−1

)
AB
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Figure 5: Runaway potential of the ‘meson’ fields.

implies that the bosonic potential tends to zero as 〈MAB〉 ∼ a tends to infinity (see Fig.5).
Thus, we come to the strange conclusion that there is no stable supersymmetric vacuum

(at finite vaccum expectation values of the meson superfields). This is inspite of the fact
that the classical theory we started with had an infinitely degenerate vacua.

Although this seems strange, it is the only possibility consistent with supersymmetry.
The alternative based on expectation from ordinary QCD is chiral symmetry breaking and
confinement. In this case the quarks would condense in pairs

〈qLAq̃LB〉 6= 0.

However, this is the F -term of MAB, a non-zero value for which would lead to supersym-
metry breaking. Therefore a QCD like vacuum with quark pair condensate is unstable
compared to any vacuum that allows for unbroken supersymmetry.

The gaugino bilinear λλ can, however, acquire a vacuum expectation value consistent
with supersymmetry. For example, in pure super-Yang-Mills theory with Nf = 0, the
effective superpotential is

Weff(Λ) = cNcΛ
3 = cNcµ

3 exp

(
2πiτeff
Nc

)
. (9.10)

Now, λλ is the scalar component of the composite chiral superfield WαWα which couples
to τ . The vacuum expectation value 〈λλ〉 can therefore be found by differentiating the
effective lagrangian Leff with respect to Fτ , the F -term of τ .

〈λλ〉 = 16πi
∂

∂Fτ

∫
d2θWeff(τ)

= 16πi
∂

∂τ
Weff(τ)

= − 32π2

Nc
cNcµ

3 exp
(

2πiτ
Nc

)
, (9.11)

14One uses the idea of holomorphic decoupling, (which is illustrated through the last problem), to get a
recursion relation for the constants in theories with different number of flavours.
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or, 〈λλ〉 ∼ e−8π2/Ncg2
(for θYM = 0), is the non-perturbative gaugino condensate.

Recall that the R-symmetry shifts λ→ eiαλ, hence θYM → θYM + 2Ncα. When α is a
multilple of π/Nc, theta angle shifts by 2π, and a Z2Nc subgroup of UR(1) remains unbroken.
However the vacuum expectation value 〈λλ〉 is invariant under λ→ −λ (α = π), breaking
Z2Nc spontaneously to a Z2 subgroup. This leads to Nc inequivalent vacuum states in pure
super-Yang-Mills theory parametrised by the vev of gaugino bilinear

〈λλ〉 = exp
(

2πim
Nc

)
, m = 0, 1, · · · , Nc − 1. (9.12)

Exercise: (Holomorphic decoupling) Consider a theory of two chiral superfields
given by the superpotential

W (Φ1,Φ2) =
1
2
mΦ2

2 + gΦ2
1Φ2.

Analyse the classical moduli space of this theory and show that at a generic point
the field Φ2 is heavy. Find the effective superpotential for the light field Φ1 by
‘integrating out’ Φ2. (In the classical theory, this means that one ignores the
kinetic term for the heavy field, and solves its resulting algebraic equation of
motion.
Now apply Seiberg’s analysis to determine the low energy effective superpotential
assuming that the only relevant degrees of freedom are those of the light field Φ1.
Compare the two results.
Identify the diagram that ‘renormalises’ the superpotential, (it is actually a tree
diagram), and see that it does not violate the non-renormalisation theorem.

A Appendix: Fierz identities

There are some identities which involve spinors. Much of it follows from simple angular
momentum addition rule.

If we take the product of a spin s1 = 1
2 representation15 with another one s2 = 1

2 , the
result is a direct sum of spin-0 and spin-1 representations:

(s1 = 1/2)⊗ (s2 = 1/2) = (s(1) = 0)⊕ (s(2) = 1),
i.e, 2⊗ 2 = 1⊕ 3.

A simpler fact is
2⊗ 1 = 2.

Since the Lorentz algebra is (almost) a direct sum of two angular momentum algebras
(see (1.5)), the above rules for tensoring representations apply to the Lorentz algebra as
well. The defining representations here are the

(
1
2 , 0
)

or (2,1) representation called the

left-handed spinor ψα and the
(
0, 1

2

)
or (1,2) representation called the right-handed spinor

χ̄α̇.
There are three basic possibilities in combining these representations.

15The spin- 1
2

representation is called the defining or fundamental representation of SU(2), as all other
representations can be constructed from it.
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• We can tensor two left-handed spinors

(2,1)⊗ (2,1) = (1,1)⊕ (3,1).

More explicitly in terms of the spinors

ψαχβ =
1
2
εαβ(ψχ)− 1

2
(ψσµνχ)σµναβ , (A.1)

we get a scalar and a rank-2 self-dual antisymmetric tensor.

Notice that the first term in the RHS above is antisymmetric (in indices α and β) while
the second one is symmetric, as is expected from the representations of the angular
momentum algebra. The coefficients 1

2 εαβ and − 1
2 σ

µν
αβ are the Clebsch-Gordon

coefficients relating different representations.

In order to prove (A.1), based on covariance properties one can argue that

ψαχβ =
1
2

(ψαχβ − χβψα) +
1
2

(ψαχβ + χβψα),

=
1
2
Aεαβ +

1
2
Bµνσ

µν
αβ .

The unknown coefficients A and Bµν may be determined by contracting both sides of
the above equation by εβα and σρλβα respectively. For the latter, we need to use the
fact that σµν is self-dual (1.9), and that

tr (σρλσµν) =
1
2

(ηρµηλν − ηρνηλµ) +
i

2
ερλµν .

• Similarly, for two right-handed spinors

(1,2)⊗ (1,2) = (1,1)⊕ (1,3).

More explicitly in terms of the spinors

ψ̄α̇χ̄β̇ =
1
2
εα̇β̇(ψ̄χ̄)− 1

2
(ψ̄σ̄µνχ̄) σ̄µνα̇β̇, (A.2)

where on the RHS we find a scalar and a rank-2 anti-self-dual antisymmetric tensor.

• Finally, combining a left- and a right-handed spinor

(2,1)⊗ (1,2) = (2,2),

ψαχ̄β̇ =
1
2

(ψσµχ̄)σµ
αβ̇
, (A.3)

we get a Lorentz vector.

Using these relations, following from basic group theoretic facts, it is easy to derive the
following relations.

ψαψβ =
1
2
εαβ(ψψ)

χ̄α̇χ̄β̇ = − 1
2
εα̇β̇(χχ)
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(θψ)(θχ) = − 1
2

(θθ)(ψχ)

(θ̄ψ)(θ̄χ) = − 1
2

(θ̄θ̄)(ψ̄χ̄)

ψσµχ̄ = − χ̄σµψ (A.4)
ψσµσ̄νχ = χσν σ̄µψ

(σµθ̄)α(θσν θ̄) =
1
2
ηµνθα(θ̄θ̄)− i(σµνθ)α(θ̄θ̄)

(θσµθ̄)(θσν θ̄) =
1
2
ηµν(θθ)(θ̄θ̄)

(θψ)(θ̄χ̄) =
1
2

(θσµθ̄)(ψσµχ̄)

These are known as Fierz identities, and are very useful in simplifying expressions involving
many spinor fields.
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