Á¦ 2ȸ ÀÌ·Ð ¹°¸® ¿©¸§ Çб³

ÀÔÀÚ¹°¸® : Solitions, Anomaly/Standard Model, Cosmology


Á¦ 2 ÁÖ : Solitons and Instantons, Anomaly

±â °£ : 7¿ù 8ÀÏ(¿ù)-7¿ù 12ÀÏ(±Ý)

°­ÀÇ ½Ã°£Ç¥ (Á¦ 2 ÁÖ)


¿ù È­ ¼ö ¸ñ ±Ý
1±³½Ã (09:00-11:00) ÀÌÁØ±Ô ÀÌÁØ±Ô ÀÌÁØ±Ô ÀÌÁØ±Ô ÀÌÁرÔ
2±³½Ã (11:00-13:00) ÀÌÇÊÁø ÀÌÇÊÁø ÃÖ±â¿î ÀÌÇÊÁø ÀÌÇÊÁø
3±³½Ã (14:30-16:00) ÃÖ±â¿î

¿¬½À ½Ã°£Ç¥ (Á¦ 2 ÁÖ)


¿ù È­ ¼ö ¸ñ ±Ý
1±³½Ã (19:00-20:30) ±è¼® ±è¼® ±è¼® ±è¼® ±è¼®
2±³½Ã (20:30-22:00) ±èÇüµµ ±èÇüµµ ±èÇüµµ ±èÇüµµ ±èÇüµµ


°­ÀÇ Á¤º¸(tentative)

    1. Anomaly

      Lecture 1 : Global Anomaly a la Fujikawa
        1) Global Anomaly at One Loop
        2) Fujikawa
        3) Basics of Heat Kernel
        4) Axial Anomaly and Dirac Index (Density)
        Exercise : Applications of Heat Kernel to Other One-Loop Computations
        (Compute Beta Functions of Gauge Theories Coupled To Matter Fields)
        Homework1-1
        Homework1-2
      Lecture 2 : Index & SUSY Quantum Mechanics
        1) Quantum Mechanics : Heat Kernel vs. Path Integral
        2) Index Densities via SUSY Quantum Mechanics Path Integral
        Exercise :Fun with Quantum Mechanics Path Integrals
        (fix various subtle items like normalzation of path integral of measures)
      Lecture 3 : Local Anomaly
        1) Local Anomaly and Wess-Zumino Consistency Condition
        2) Local Anomaly from Index Densities
        3) Anomaly Polynomials
        Exercise : Understand Notations like p_n (Pontryagin density)
        Evaluate Consistenty Anomaly Starting from Given Anomaly Polynomials
      Lecture 4 & 5 : More on Local Anomaly
        1) Examples of Gravitational Anomaly
        2) Anomaly of Various Supersymmetric Theories in D=4,6,10
        3) Gauge Anomaly in Odd Dimensions: Orbifold Field Theories
        4) Anomaly at Classical Level
        Exercise : To be announced

      References:
      1. Current Algebra and Anomaly
      (Sam B. Treiman et al: Princeton University Press)
      2. Please try to read as much as possible
      Chaper 19 of "An Introduction to Quantum Field Theory"
      by Peskin and Schroeder(Addison-Wesley)

  • °­»ç : ÀÌÇÊÁø (°íµî°úÇпø)
  • Á¶±³ : ±èÇüµµ (°íµî°úÇпø)
2. Solitons and Instantons

  • °­»ç : ÀÌÁØ±Ô (¼­¿ï´ë)
  • Á¶±³ : ±è¼® (¼­¿ï´ë)

E-mail : hdkim@kias.re.kr