Á¦ 2 ÁÖ : Solitons and Instantons, Anomaly |
±â °£ : 7¿ù 8ÀÏ(¿ù)-7¿ù 12ÀÏ(±Ý) | ||||||||||||||||||||||||||||||||||||||||||
°ÀÇ ½Ã°£Ç¥ (Á¦ 2 ÁÖ)
¿¬½À ½Ã°£Ç¥ (Á¦ 2 ÁÖ)
|
|||||||||||||||||||||||||||||||||||||||||||
°ÀÇ Á¤º¸(tentative)
2) Fujikawa 3) Basics of Heat Kernel 4) Axial Anomaly and Dirac Index (Density) Exercise : Applications of Heat Kernel to Other One-Loop Computations (Compute Beta Functions of Gauge Theories Coupled To Matter Fields) Homework1-1 Homework1-2
2) Index Densities via SUSY Quantum Mechanics Path Integral Exercise :Fun with Quantum Mechanics Path Integrals (fix various subtle items like normalzation of path integral of measures)
2) Local Anomaly from Index Densities 3) Anomaly Polynomials Exercise : Understand Notations like p_n (Pontryagin density) Evaluate Consistenty Anomaly Starting from Given Anomaly Polynomials
2) Anomaly of Various Supersymmetric Theories in D=4,6,10 3) Gauge Anomaly in Odd Dimensions: Orbifold Field Theories 4) Anomaly at Classical Level Exercise : To be announced References: 1. Current Algebra and Anomaly (Sam B. Treiman et al: Princeton University Press) 2. Please try to read as much as possible Chaper 19 of "An Introduction to Quantum Field Theory" by Peskin and Schroeder(Addison-Wesley)
|