
1Zero Problems in Theory and Applications

Chee Yap
KIAS, and

Courant Institute of Mathematical Sciences
Department of Computer Science

New York University

KIAS Zero Workshop July 19-21, 2007

2TALK OVERVIEW

• Is There a Problem with Zero?

• Why Care About Nothing (Zero)?

• On Zero Bounds and Adaptivity

• On Foundations of Real Computation

• Conclusions

KIAS Zero Workshop July 19-21, 2007

3

PART I.
Is There a Problem with Zero?

“The history of the zero recognition problem is somewhat confused by
the fact that many people do not recognize it as a problem at all.”

— Daniel Richardson (1996)

KIAS Zero Workshop July 19-21, 2007

4What Appears to be the Problem?

• Is a number equal to zero?
∗ Decision Problem – YES/NO answers

• Why is any effort needed at all?
∗ Numbers have canonical names

∗ E.g., zero, one, two, half, negative ten, square-root two, pi, etc

∗ In symbols, 0, 1, 2, 1
2, −10,

√
2, π, . . .

• Numerical Expressions (non-canonical!)
∗ 1− 1 + 1− 1,

∗ 22 + 5− 32,

∗ 1−
∑∞

n=1 2−n,

∗
√

2 +
√

3−
√

5 + 2
√

6

∗ These are all 0

KIAS Zero Workshop July 19-21, 2007

4What Appears to be the Problem?

• Is a number equal to zero?
∗ Decision Problem – YES/NO answers

• Why is any effort needed at all?
∗ Numbers have canonical names

∗ E.g., zero, one, two, half, negative ten, square-root two, pi, etc

∗ In symbols, 0, 1, 2, 1
2, −10,

√
2, π, . . .

• Numerical Expressions (non-canonical!)
∗ 1− 1 + 1− 1,

∗ 22 + 5− 32,

∗ 1−
∑∞

n=1 2−n,

∗
√

2 +
√

3−
√

5 + 2
√

6

∗ These are all 0

KIAS Zero Workshop July 19-21, 2007

4What Appears to be the Problem?

• Is a number equal to zero?
∗ Decision Problem – YES/NO answers

• Why is any effort needed at all?
∗ Numbers have canonical names

∗ E.g., zero, one, two, half, negative ten, square-root two, pi, etc

∗ In symbols, 0, 1, 2, 1
2, −10,

√
2, π, . . .

• Numerical Expressions (non-canonical!)
∗ 1− 1 + 1− 1,

∗ 22 + 5− 32,

∗ 1−
∑∞

n=1 2−n,

∗
√

2 +
√

3−
√

5 + 2
√

6

∗ These are all 0

KIAS Zero Workshop July 19-21, 2007

4What Appears to be the Problem?

• Is a number equal to zero?
∗ Decision Problem – YES/NO answers

• Why is any effort needed at all?
∗ Numbers have canonical names

∗ E.g., zero, one, two, half, negative ten, square-root two, pi, etc

∗ In symbols, 0, 1, 2, 1
2, −10,

√
2, π, . . .

• Numerical Expressions (non-canonical!)
∗ 1− 1 + 1− 1,

∗ 22 + 5− 32,

∗ 1−
∑∞

n=1 2−n,

∗
√

2 +
√

3−
√

5 + 2
√

6

∗ These are all 0

KIAS Zero Workshop July 19-21, 2007

5But is it REALLY zero?

• Two ways to decide zero:
∗ (A) Algebraically. E.g., repeated squaring

∗ (B) Numerically. E.g., by approximation

• We are interested in (B):
∗

√
2 +

√
3−

√
5 + 2

√
6 = 1.4142 + 1.7320−

√
5 + 2× 2.4494

= 3.1462−
√

9.8989

= 3.1462− 3.1462

= 0 ??

KIAS Zero Workshop July 19-21, 2007

5But is it REALLY zero?

• Two ways to decide zero:
∗ (A) Algebraically. E.g., repeated squaring

∗ (B) Numerically. E.g., by approximation

• We are interested in (B):
∗

√
2 +

√
3−

√
5 + 2

√
6 = 1.4142 + 1.7320−

√
5 + 2× 2.4494

= 3.1462−
√

9.8989

= 3.1462− 3.1462

= 0 ??

KIAS Zero Workshop July 19-21, 2007

5But is it REALLY zero?

• Two ways to decide zero:
∗ (A) Algebraically. E.g., repeated squaring

∗ (B) Numerically. E.g., by approximation

• We are interested in (B):
∗

√
2 +

√
3−

√
5 + 2

√
6 = 1.4142 + 1.7320−

√
5 + 2× 2.4494

= 3.1462−
√

9.8989

= 3.1462− 3.1462

= 0 ??

KIAS Zero Workshop July 19-21, 2007

6Apparent Zeros

• Folklore:
∗

(
3 · log(640320)/

√
163

)
− π < 10−15

• R.Graham:
∗

(√
1000001 +

√
1000025 +

√
1000031 +

√
1000084 +

√
1000087

+
√

1000134 +
√

1000158 +
√

1000182 +
√

1000198
)

−
(√

1000002 +
√

1000018 +
√

1000042 +
√

1000066 +
√

1000113

+
√

1000116 +
√

1000169 +
√

1000175 +
√

1000199
)

< 10−36

• Many more...

• Richardson (2005)
∗ Let F (x) = (1 + x)1/2 − 2(1 + 3x/4)1/3 + 1

∗ Then F (F (10−126)) < 10−1141

KIAS Zero Workshop July 19-21, 2007

6Apparent Zeros

• Folklore:
∗

(
3 · log(640320)/

√
163

)
− π < 10−15

• R.Graham:
∗

(√
1000001 +

√
1000025 +

√
1000031 +

√
1000084 +

√
1000087

+
√

1000134 +
√

1000158 +
√

1000182 +
√

1000198
)

−
(√

1000002 +
√

1000018 +
√

1000042 +
√

1000066 +
√

1000113

+
√

1000116 +
√

1000169 +
√

1000175 +
√

1000199
)

< 10−36

• Many more...

• Richardson (2005)
∗ Let F (x) = (1 + x)1/2 − 2(1 + 3x/4)1/3 + 1

∗ Then F (F (10−126)) < 10−1141

KIAS Zero Workshop July 19-21, 2007

6Apparent Zeros

• Folklore:
∗

(
3 · log(640320)/

√
163

)
− π < 10−15

• R.Graham:
∗

(√
1000001 +

√
1000025 +

√
1000031 +

√
1000084 +

√
1000087

+
√

1000134 +
√

1000158 +
√

1000182 +
√

1000198
)

−
(√

1000002 +
√

1000018 +
√

1000042 +
√

1000066 +
√

1000113

+
√

1000116 +
√

1000169 +
√

1000175 +
√

1000199
)

< 10−36

• Many more...

• Richardson (2005)
∗ Let F (x) = (1 + x)1/2 − 2(1 + 3x/4)1/3 + 1

∗ Then F (F (10−126)) < 10−1141

KIAS Zero Workshop July 19-21, 2007

6Apparent Zeros

• Folklore:
∗

(
3 · log(640320)/

√
163

)
− π < 10−15

• R.Graham:
∗

(√
1000001 +

√
1000025 +

√
1000031 +

√
1000084 +

√
1000087

+
√

1000134 +
√

1000158 +
√

1000182 +
√

1000198
)

−
(√

1000002 +
√

1000018 +
√

1000042 +
√

1000066 +
√

1000113

+
√

1000116 +
√

1000169 +
√

1000175 +
√

1000199
)

< 10−36

• Many more...

• Richardson (2005)
∗ Let F (x) = (1 + x)1/2 − 2(1 + 3x/4)1/3 + 1

∗ Then F (F (10−126)) < 10−1141

KIAS Zero Workshop July 19-21, 2007

6Apparent Zeros

• Folklore:
∗

(
3 · log(640320)/

√
163

)
− π < 10−15

• R.Graham:
∗

(√
1000001 +

√
1000025 +

√
1000031 +

√
1000084 +

√
1000087

+
√

1000134 +
√

1000158 +
√

1000182 +
√

1000198
)

−
(√

1000002 +
√

1000018 +
√

1000042 +
√

1000066 +
√

1000113

+
√

1000116 +
√

1000169 +
√

1000175 +
√

1000199
)

< 10−36

• Many more...

• Richardson (2005)
∗ Let F (x) = (1 + x)1/2 − 2(1 + 3x/4)1/3 + 1

∗ Then F (F (10−126)) < 10−1141

KIAS Zero Workshop July 19-21, 2007

7The Zero Problems

• Ω = set of algebraic operators
∗ E.g., Ω = {±,×,÷} ∪ Z

• Let Expr(Ω) denote expressions over Ω

• Evaluation function:
Val : Expr(Ω) !C

∗ Say e is invalid if Val(e) =↑

• Zero problem, ZERO(Ω):
∗ Given e ∈ Expr(Ω), is Val(e) = 0 ?

KIAS Zero Workshop July 19-21, 2007

7The Zero Problems

• Ω = set of algebraic operators
∗ E.g., Ω = {±,×,÷} ∪ Z

• Let Expr(Ω) denote expressions over Ω

• Evaluation function:
Val : Expr(Ω) !C

∗ Say e is invalid if Val(e) =↑

• Zero problem, ZERO(Ω):
∗ Given e ∈ Expr(Ω), is Val(e) = 0 ?

KIAS Zero Workshop July 19-21, 2007

7The Zero Problems

• Ω = set of algebraic operators
∗ E.g., Ω = {±,×,÷} ∪ Z

• Let Expr(Ω) denote expressions over Ω

• Evaluation function:
Val : Expr(Ω) !C

∗ Say e is invalid if Val(e) =↑

• Zero problem, ZERO(Ω):
∗ Given e ∈ Expr(Ω), is Val(e) = 0 ?

KIAS Zero Workshop July 19-21, 2007

7The Zero Problems

• Ω = set of algebraic operators
∗ E.g., Ω = {±,×,÷} ∪ Z

• Let Expr(Ω) denote expressions over Ω

• Evaluation function:
Val : Expr(Ω) !C

∗ Say e is invalid if Val(e) =↑

• Zero problem, ZERO(Ω):
∗ Given e ∈ Expr(Ω), is Val(e) = 0 ?

KIAS Zero Workshop July 19-21, 2007

7The Zero Problems

• Ω = set of algebraic operators
∗ E.g., Ω = {±,×,÷} ∪ Z

• Let Expr(Ω) denote expressions over Ω

• Evaluation function:
Val : Expr(Ω) !C

∗ Say e is invalid if Val(e) =↑

• Zero problem, ZERO(Ω):
∗ Given e ∈ Expr(Ω), is Val(e) = 0 ?

KIAS Zero Workshop July 19-21, 2007

8Error Notation

• NOTATION: x̃ = x± h
∗ means |x̃− x| ≤ h

• Absolute Error
∗ x̃ is a absolute p-bit approximation of x if x̃ = x ± 2−p

• Relative Error
∗ x̃ is a relative p-bit approximation of x if x̃ = x(1± 2−p|x|)

• Precision vs. Error
∗ (1) “precision” is a priori error

∗ (2) “error” is a posteriori error

KIAS Zero Workshop July 19-21, 2007

8Error Notation

• NOTATION: x̃ = x± h
∗ means |x̃− x| ≤ h

• Absolute Error
∗ x̃ is a absolute p-bit approximation of x if x̃ = x ± 2−p

• Relative Error
∗ x̃ is a relative p-bit approximation of x if x̃ = x(1± 2−p|x|)

• Precision vs. Error
∗ (1) “precision” is a priori error

∗ (2) “error” is a posteriori error

KIAS Zero Workshop July 19-21, 2007

8Error Notation

• NOTATION: x̃ = x± h
∗ means |x̃− x| ≤ h

• Absolute Error
∗ x̃ is a absolute p-bit approximation of x if x̃ = x ± 2−p

• Relative Error
∗ x̃ is a relative p-bit approximation of x if x̃ = x(1± 2−p|x|)

• Precision vs. Error
∗ (1) “precision” is a priori error

∗ (2) “error” is a posteriori error

KIAS Zero Workshop July 19-21, 2007

8Error Notation

• NOTATION: x̃ = x± h
∗ means |x̃− x| ≤ h

• Absolute Error
∗ x̃ is a absolute p-bit approximation of x if x̃ = x ± 2−p

• Relative Error
∗ x̃ is a relative p-bit approximation of x if x̃ = x(1± 2−p|x|)

• Precision vs. Error
∗ (1) “precision” is a priori error

∗ (2) “error” is a posteriori error

KIAS Zero Workshop July 19-21, 2007

8Error Notation

• NOTATION: x̃ = x± h
∗ means |x̃− x| ≤ h

• Absolute Error
∗ x̃ is a absolute p-bit approximation of x if x̃ = x ± 2−p

• Relative Error
∗ x̃ is a relative p-bit approximation of x if x̃ = x(1± 2−p|x|)

• Precision vs. Error
∗ (1) “precision” is a priori error

∗ (2) “error” is a posteriori error

KIAS Zero Workshop July 19-21, 2007

9Partial Functions

• Partial function, f : S !T
∗ Nominal domain: S

∗ Proper domain: dom(f) = {w ∈ S : f(w) =↓}
∗ If S = dom(f), then f is total, written f : S → Σ∗

• Two cases of interest:
∗ (Discrete computation) Turing Machines for computing f : S ⊆ Σ∗ -Σ∗

∗ (Continuous computation) Real functions f : S ⊆ R -R

• Why have both S and partial f?
∗ In analysis: we often choose S to be nice

∗ In algebra: we have no choice about S, and f may be partial (E.g., ÷)

KIAS Zero Workshop July 19-21, 2007

9Partial Functions

• Partial function, f : S !T
∗ Nominal domain: S

∗ Proper domain: dom(f) = {w ∈ S : f(w) =↓}
∗ If S = dom(f), then f is total, written f : S → Σ∗

• Two cases of interest:
∗ (Discrete computation) Turing Machines for computing f : S ⊆ Σ∗ -Σ∗

∗ (Continuous computation) Real functions f : S ⊆ R -R

• Why have both S and partial f?
∗ In analysis: we often choose S to be nice

∗ In algebra: we have no choice about S, and f may be partial (E.g., ÷)

KIAS Zero Workshop July 19-21, 2007

9Partial Functions

• Partial function, f : S !T
∗ Nominal domain: S

∗ Proper domain: dom(f) = {w ∈ S : f(w) =↓}
∗ If S = dom(f), then f is total, written f : S → Σ∗

• Two cases of interest:
∗ (Discrete computation) Turing Machines for computing f : S ⊆ Σ∗ -Σ∗

∗ (Continuous computation) Real functions f : S ⊆ R -R

• Why have both S and partial f?
∗ In analysis: we often choose S to be nice

∗ In algebra: we have no choice about S, and f may be partial (E.g., ÷)

KIAS Zero Workshop July 19-21, 2007

9Partial Functions

• Partial function, f : S !T
∗ Nominal domain: S

∗ Proper domain: dom(f) = {w ∈ S : f(w) =↓}
∗ If S = dom(f), then f is total, written f : S → Σ∗

• Two cases of interest:
∗ (Discrete computation) Turing Machines for computing f : S ⊆ Σ∗ -Σ∗

∗ (Continuous computation) Real functions f : S ⊆ R -R

• Why have both S and partial f?
∗ In analysis: we often choose S to be nice

∗ In algebra: we have no choice about S, and f may be partial (E.g., ÷)

KIAS Zero Workshop July 19-21, 2007

10Classic (Discrete) Computability Theory

• f is partial recursive if there is a Turing machine M :
∗ (1) For all w ∈ dom(f), M halts with outputs f(w)

∗ (2) For all w .∈ dom(f), M does not halt

• f is recursive if ...
∗ (1) For all w ∈ dom(f), ...

∗ (2) For all w .∈ dom(f), M halts in a state q↑

• E.g., ÷ : Q×Q !Q a recursive partial (!) function

• Rec = Recursive functions;
Prec = Partial Recursive functions

KIAS Zero Workshop July 19-21, 2007

10Classic (Discrete) Computability Theory

• f is partial recursive if there is a Turing machine M :
∗ (1) For all w ∈ dom(f), M halts with outputs f(w)

∗ (2) For all w .∈ dom(f), M does not halt

• f is recursive if ...
∗ (1) For all w ∈ dom(f), ...

∗ (2) For all w .∈ dom(f), M halts in a state q↑

• E.g., ÷ : Q×Q !Q a recursive partial (!) function

• Rec = Recursive functions;
Prec = Partial Recursive functions

KIAS Zero Workshop July 19-21, 2007

10Classic (Discrete) Computability Theory

• f is partial recursive if there is a Turing machine M :
∗ (1) For all w ∈ dom(f), M halts with outputs f(w)

∗ (2) For all w .∈ dom(f), M does not halt

• f is recursive if ...
∗ (1) For all w ∈ dom(f), ...

∗ (2) For all w .∈ dom(f), M halts in a state q↑

• E.g., ÷ : Q×Q !Q a recursive partial (!) function

• Rec = Recursive functions;
Prec = Partial Recursive functions

KIAS Zero Workshop July 19-21, 2007

10Classic (Discrete) Computability Theory

• f is partial recursive if there is a Turing machine M :
∗ (1) For all w ∈ dom(f), M halts with outputs f(w)

∗ (2) For all w .∈ dom(f), M does not halt

• f is recursive if ...
∗ (1) For all w ∈ dom(f), ...

∗ (2) For all w .∈ dom(f), M halts in a state q↑

• E.g., ÷ : Q×Q !Q a recursive partial (!) function

• Rec = Recursive functions;
Prec = Partial Recursive functions

KIAS Zero Workshop July 19-21, 2007

10Classic (Discrete) Computability Theory

• f is partial recursive if there is a Turing machine M :
∗ (1) For all w ∈ dom(f), M halts with outputs f(w)

∗ (2) For all w .∈ dom(f), M does not halt

• f is recursive if ...
∗ (1) For all w ∈ dom(f), ...

∗ (2) For all w .∈ dom(f), M halts in a state q↑

• E.g., ÷ : Q×Q !Q a recursive partial (!) function

• Rec = Recursive functions;
Prec = Partial Recursive functions

KIAS Zero Workshop July 19-21, 2007

11Classic (Discrete) Computability Theory

• Rec ⊆ Prec
∗ There exists a function HALT in Prec \ Rec

∗ Every f ∈ Prec is reducible to HALT

• What happens to the Halting Problem in the continuous domain?

KIAS Zero Workshop July 19-21, 2007

11Classic (Discrete) Computability Theory

• Rec ⊆ Prec
∗ There exists a function HALT in Prec \ Rec

∗ Every f ∈ Prec is reducible to HALT

• What happens to the Halting Problem in the continuous domain?

KIAS Zero Workshop July 19-21, 2007

11Classic (Discrete) Computability Theory

• Rec ⊆ Prec
∗ There exists a function HALT in Prec \ Rec

∗ Every f ∈ Prec is reducible to HALT

• What happens to the Halting Problem in the continuous domain?

KIAS Zero Workshop July 19-21, 2007

12Real Approximations

• A set F of base reals is any subset F ⊆ R such that
∗ (1) F is a ring extension of Z
∗ (2) F is countably dense in R
∗ (3) Ring operations, x /→ x/2 and comparisons of F are efficient

• E.g., F = Q or F = {n2m : n, m ∈ Z}

• Let f : S ⊆ R !R and f̃ : F× Z !F

• f̃ is an A-approximation of f if:
for all x ∈ F, f̃(x; p) ≡ f(x)± 2−p.

∗ Similarly for R-approximable.

KIAS Zero Workshop July 19-21, 2007

12Real Approximations

• A set F of base reals is any subset F ⊆ R such that
∗ (1) F is a ring extension of Z
∗ (2) F is countably dense in R
∗ (3) Ring operations, x /→ x/2 and comparisons of F are efficient

• E.g., F = Q or F = {n2m : n, m ∈ Z}

• Let f : S ⊆ R !R and f̃ : F× Z !F

• f̃ is an A-approximation of f if:
for all x ∈ F, f̃(x; p) ≡ f(x)± 2−p.

∗ Similarly for R-approximable.

KIAS Zero Workshop July 19-21, 2007

12Real Approximations

• A set F of base reals is any subset F ⊆ R such that
∗ (1) F is a ring extension of Z
∗ (2) F is countably dense in R
∗ (3) Ring operations, x /→ x/2 and comparisons of F are efficient

• E.g., F = Q or F = {n2m : n, m ∈ Z}

• Let f : S ⊆ R !R and f̃ : F× Z !F

• f̃ is an A-approximation of f if:
for all x ∈ F, f̃(x; p) ≡ f(x)± 2−p.

∗ Similarly for R-approximable.

KIAS Zero Workshop July 19-21, 2007

12Real Approximations

• A set F of base reals is any subset F ⊆ R such that
∗ (1) F is a ring extension of Z
∗ (2) F is countably dense in R
∗ (3) Ring operations, x /→ x/2 and comparisons of F are efficient

• E.g., F = Q or F = {n2m : n, m ∈ Z}

• Let f : S ⊆ R !R and f̃ : F× Z !F

• f̃ is an A-approximation of f if:
for all x ∈ F, f̃(x; p) ≡ f(x)± 2−p.

∗ Similarly for R-approximable.

KIAS Zero Workshop July 19-21, 2007

12Real Approximations

• A set F of base reals is any subset F ⊆ R such that
∗ (1) F is a ring extension of Z
∗ (2) F is countably dense in R
∗ (3) Ring operations, x /→ x/2 and comparisons of F are efficient

• E.g., F = Q or F = {n2m : n, m ∈ Z}

• Let f : S ⊆ R !R and f̃ : F× Z !F

• f̃ is an A-approximation of f if:
for all x ∈ F, f̃(x; p) ≡ f(x)± 2−p.

∗ Similarly for R-approximable.

KIAS Zero Workshop July 19-21, 2007

13• Let Af denote (an arbitrary member of) the set of all A-approximations
of f .

• f is A-approxible if some f ∈ Af is computable by a halting Turing
machine

∗ Similarly for R-approximable and the set Rf .

• E.g., the field operations ±,×,÷ and exp, log are all R-approximable.

KIAS Zero Workshop July 19-21, 2007

13• Let Af denote (an arbitrary member of) the set of all A-approximations
of f .

• f is A-approxible if some f ∈ Af is computable by a halting Turing
machine

∗ Similarly for R-approximable and the set Rf .

• E.g., the field operations ±,×,÷ and exp, log are all R-approximable.

KIAS Zero Workshop July 19-21, 2007

13• Let Af denote (an arbitrary member of) the set of all A-approximations
of f .

• f is A-approxible if some f ∈ Af is computable by a halting Turing
machine

∗ Similarly for R-approximable and the set Rf .

• E.g., the field operations ±,×,÷ and exp, log are all R-approximable.

KIAS Zero Workshop July 19-21, 2007

13• Let Af denote (an arbitrary member of) the set of all A-approximations
of f .

• f is A-approxible if some f ∈ Af is computable by a halting Turing
machine

∗ Similarly for R-approximable and the set Rf .

• E.g., the field operations ±,×,÷ and exp, log are all R-approximable.

KIAS Zero Workshop July 19-21, 2007

14Sign Lemma

• SIGN LEMMA:
sign(f(x)) = sign(Rf(x; 1))

• Proof: Rf(x; 1) = f(x)(1± 2−1).

KIAS Zero Workshop July 19-21, 2007

15Zero Problem in Real Approximations

• Zero(f) is the problem of deciding for x ∈ F, whether f(x) = 0

• THEOREM: The following is equivalent:
∗ f is R-approximable

∗ f is A-approximable and Zero(f) is decidable

• Proof: (⇒) Given x and p, we want to compute Af(x; p).
∗ (1) compute c = Rf(x; 1)

∗ (2) x ∈ Zero(f) iff c = 0 (by SIGN LEMMA)

∗ (3) If c .= 0, OUTPUT Rf(x, p + 1 + 0lg |c|1)

• Proof: (⇐) Given x and p, we want to compute Rf(x; p).
∗ (1) If f(x) = 0, OUTPUT 0

∗ (2) Find the first n such that |Af(x; n)| ≥ 21−n

∗ (3) So |f(x)| ≥ 2−n. OUTPUT Af(x; n + p)

KIAS Zero Workshop July 19-21, 2007

15Zero Problem in Real Approximations

• Zero(f) is the problem of deciding for x ∈ F, whether f(x) = 0

• THEOREM: The following is equivalent:
∗ f is R-approximable

∗ f is A-approximable and Zero(f) is decidable

• Proof: (⇒) Given x and p, we want to compute Af(x; p).
∗ (1) compute c = Rf(x; 1)

∗ (2) x ∈ Zero(f) iff c = 0 (by SIGN LEMMA)

∗ (3) If c .= 0, OUTPUT Rf(x, p + 1 + 0lg |c|1)

• Proof: (⇐) Given x and p, we want to compute Rf(x; p).
∗ (1) If f(x) = 0, OUTPUT 0

∗ (2) Find the first n such that |Af(x; n)| ≥ 21−n

∗ (3) So |f(x)| ≥ 2−n. OUTPUT Af(x; n + p)

KIAS Zero Workshop July 19-21, 2007

15Zero Problem in Real Approximations

• Zero(f) is the problem of deciding for x ∈ F, whether f(x) = 0

• THEOREM: The following is equivalent:
∗ f is R-approximable

∗ f is A-approximable and Zero(f) is decidable

• Proof: (⇒) Given x and p, we want to compute Af(x; p).
∗ (1) compute c = Rf(x; 1)

∗ (2) x ∈ Zero(f) iff c = 0 (by SIGN LEMMA)

∗ (3) If c .= 0, OUTPUT Rf(x, p + 1 + 0lg |c|1)

• Proof: (⇐) Given x and p, we want to compute Rf(x; p).
∗ (1) If f(x) = 0, OUTPUT 0

∗ (2) Find the first n such that |Af(x; n)| ≥ 21−n

∗ (3) So |f(x)| ≥ 2−n. OUTPUT Af(x; n + p)

KIAS Zero Workshop July 19-21, 2007

15Zero Problem in Real Approximations

• Zero(f) is the problem of deciding for x ∈ F, whether f(x) = 0

• THEOREM: The following is equivalent:
∗ f is R-approximable

∗ f is A-approximable and Zero(f) is decidable

• Proof: (⇒) Given x and p, we want to compute Af(x; p).
∗ (1) compute c = Rf(x; 1)

∗ (2) x ∈ Zero(f) iff c = 0 (by SIGN LEMMA)

∗ (3) If c .= 0, OUTPUT Rf(x, p + 1 + 0lg |c|1)

• Proof: (⇐) Given x and p, we want to compute Rf(x; p).
∗ (1) If f(x) = 0, OUTPUT 0

∗ (2) Find the first n such that |Af(x; n)| ≥ 21−n

∗ (3) So |f(x)| ≥ 2−n. OUTPUT Af(x; n + p)

KIAS Zero Workshop July 19-21, 2007

15Zero Problem in Real Approximations

• Zero(f) is the problem of deciding for x ∈ F, whether f(x) = 0

• THEOREM: The following is equivalent:
∗ f is R-approximable

∗ f is A-approximable and Zero(f) is decidable

• Proof: (⇒) Given x and p, we want to compute Af(x; p).
∗ (1) compute c = Rf(x; 1)

∗ (2) x ∈ Zero(f) iff c = 0 (by SIGN LEMMA)

∗ (3) If c .= 0, OUTPUT Rf(x, p + 1 + 0lg |c|1)

• Proof: (⇐) Given x and p, we want to compute Rf(x; p).
∗ (1) If f(x) = 0, OUTPUT 0

∗ (2) Find the first n such that |Af(x; n)| ≥ 21−n

∗ (3) So |f(x)| ≥ 2−n. OUTPUT Af(x; n + p)

KIAS Zero Workshop July 19-21, 2007

16Separation of Abs and Rel

• THEOREM: There is an A-approximable function that is not R-
approximable.

• Proof: Let H : N→ F where H(i) =
{

0 if i-th TM on 0 halts
2−k if i-th TM on 0 halts in k steps

∗ H is not R-approximable: otherwise HALT is recursive.
∗ H is A-approximable: on i, j we can compute H̃(i; j)

such that |H̃(i; j)−H(i)| ≤ 2−j

• OPEN PROBLEM: Find a Natural Example

KIAS Zero Workshop July 19-21, 2007

16Separation of Abs and Rel

• THEOREM: There is an A-approximable function that is not R-
approximable.

• Proof: Let H : N→ F where H(i) =
{

0 if i-th TM on 0 halts
2−k if i-th TM on 0 halts in k steps

∗ H is not R-approximable: otherwise HALT is recursive.
∗ H is A-approximable: on i, j we can compute H̃(i; j)

such that |H̃(i; j)−H(i)| ≤ 2−j

• OPEN PROBLEM: Find a Natural Example

KIAS Zero Workshop July 19-21, 2007

16Separation of Abs and Rel

• THEOREM: There is an A-approximable function that is not R-
approximable.

• Proof: Let H : N→ F where H(i) =
{

0 if i-th TM on 0 halts
2−k if i-th TM on 0 halts in k steps

∗ H is not R-approximable: otherwise HALT is recursive.
∗ H is A-approximable: on i, j we can compute H̃(i; j)

such that |H̃(i; j)−H(i)| ≤ 2−j

• OPEN PROBLEM: Find a Natural Example

KIAS Zero Workshop July 19-21, 2007

16Separation of Abs and Rel

• THEOREM: There is an A-approximable function that is not R-
approximable.

• Proof: Let H : N→ F where H(i) =
{

0 if i-th TM on 0 halts
2−k if i-th TM on 0 halts in k steps

∗ H is not R-approximable: otherwise HALT is recursive.
∗ H is A-approximable: on i, j we can compute H̃(i; j)

such that |H̃(i; j)−H(i)| ≤ 2−j

• OPEN PROBLEM: Find a Natural Example

KIAS Zero Workshop July 19-21, 2007

17Complexity of Zero Problems

• Useful complexity classification

• Zero Hierarchy
∗ Polynomial: Ω0 :={+,−,×} ∪ Z
∗ Rational: Ω1 := Ω0 ∪ {÷}
∗ Radical: Ω2 := Ω1 ∪ { k√· : k ≥ 2}
∗ Algebraic: Ω3 := Ω2 ∪ {RootOf}
∗ Elementary: Ω4 = Ω3 ∪ {exp, log}

• Complexity
∗ ZERO(Ω1) is in PSPACE and P -complete [Mehlhorn-Schmitt-Yap]

∗ ZERO(Ω3) is decidable in Single Exponential Time [Tarski,Grigoriev,etc]

∗ ZERO(Ω4) is decidable provided Schanuel’s conjecture holds [Richardson]

• OPEN PROBLEM: Is ZERO(Ω4) decidable?

KIAS Zero Workshop July 19-21, 2007

17Complexity of Zero Problems

• Useful complexity classification

• Zero Hierarchy
∗ Polynomial: Ω0 :={+,−,×} ∪ Z
∗ Rational: Ω1 := Ω0 ∪ {÷}
∗ Radical: Ω2 := Ω1 ∪ { k√· : k ≥ 2}
∗ Algebraic: Ω3 := Ω2 ∪ {RootOf}
∗ Elementary: Ω4 = Ω3 ∪ {exp, log}

• Complexity
∗ ZERO(Ω1) is in PSPACE and P -complete [Mehlhorn-Schmitt-Yap]

∗ ZERO(Ω3) is decidable in Single Exponential Time [Tarski,Grigoriev,etc]

∗ ZERO(Ω4) is decidable provided Schanuel’s conjecture holds [Richardson]

• OPEN PROBLEM: Is ZERO(Ω4) decidable?

KIAS Zero Workshop July 19-21, 2007

17Complexity of Zero Problems

• Useful complexity classification

• Zero Hierarchy
∗ Polynomial: Ω0 :={+,−,×} ∪ Z
∗ Rational: Ω1 := Ω0 ∪ {÷}
∗ Radical: Ω2 := Ω1 ∪ { k√· : k ≥ 2}
∗ Algebraic: Ω3 := Ω2 ∪ {RootOf}
∗ Elementary: Ω4 = Ω3 ∪ {exp, log}

• Complexity
∗ ZERO(Ω1) is in PSPACE and P -complete [Mehlhorn-Schmitt-Yap]

∗ ZERO(Ω3) is decidable in Single Exponential Time [Tarski,Grigoriev,etc]

∗ ZERO(Ω4) is decidable provided Schanuel’s conjecture holds [Richardson]

• OPEN PROBLEM: Is ZERO(Ω4) decidable?

KIAS Zero Workshop July 19-21, 2007

17Complexity of Zero Problems

• Useful complexity classification

• Zero Hierarchy
∗ Polynomial: Ω0 :={+,−,×} ∪ Z
∗ Rational: Ω1 := Ω0 ∪ {÷}
∗ Radical: Ω2 := Ω1 ∪ { k√· : k ≥ 2}
∗ Algebraic: Ω3 := Ω2 ∪ {RootOf}
∗ Elementary: Ω4 = Ω3 ∪ {exp, log}

• Complexity
∗ ZERO(Ω1) is in PSPACE and P -complete [Mehlhorn-Schmitt-Yap]

∗ ZERO(Ω3) is decidable in Single Exponential Time [Tarski,Grigoriev,etc]

∗ ZERO(Ω4) is decidable provided Schanuel’s conjecture holds [Richardson]

• OPEN PROBLEM: Is ZERO(Ω4) decidable?

KIAS Zero Workshop July 19-21, 2007

17Complexity of Zero Problems

• Useful complexity classification

• Zero Hierarchy
∗ Polynomial: Ω0 :={+,−,×} ∪ Z
∗ Rational: Ω1 := Ω0 ∪ {÷}
∗ Radical: Ω2 := Ω1 ∪ { k√· : k ≥ 2}
∗ Algebraic: Ω3 := Ω2 ∪ {RootOf}
∗ Elementary: Ω4 = Ω3 ∪ {exp, log}

• Complexity
∗ ZERO(Ω1) is in PSPACE and P -complete [Mehlhorn-Schmitt-Yap]

∗ ZERO(Ω3) is decidable in Single Exponential Time [Tarski,Grigoriev,etc]

∗ ZERO(Ω4) is decidable provided Schanuel’s conjecture holds [Richardson]

• OPEN PROBLEM: Is ZERO(Ω4) decidable?

KIAS Zero Workshop July 19-21, 2007

18

PART II.
Why Care About Nothing (Zero)?

Much Ado About Nothing

– Shakespeare (1600)

KIAS Zero Workshop July 19-21, 2007

19Points and Lines

• Simple geometric test:
∗ Is a point P on a line L?

•

• P is on L ⇔ ax0 + by0 + c = 0
∗ L : aX + bY + c = 0

∗ P : (x0, y0)

• In Meshing Applications
∗ Point Classification Problem: Is P IN/OUT/ON a given triangle?

∗ Sign determination

• Upshot
∗ Knowing zero (and sign) is necessary for computing correct geometry

KIAS Zero Workshop July 19-21, 2007

19Points and Lines

• Simple geometric test:
∗ Is a point P on a line L?

•

• P is on L ⇔ ax0 + by0 + c = 0
∗ L : aX + bY + c = 0

∗ P : (x0, y0)

• In Meshing Applications
∗ Point Classification Problem: Is P IN/OUT/ON a given triangle?

∗ Sign determination

• Upshot
∗ Knowing zero (and sign) is necessary for computing correct geometry

KIAS Zero Workshop July 19-21, 2007

19Points and Lines

• Simple geometric test:
∗ Is a point P on a line L?

•

P

L′
L

• P is on L ⇔ ax0 + by0 + c = 0
∗ L : aX + bY + c = 0

∗ P : (x0, y0)

• In Meshing Applications
∗ Point Classification Problem: Is P IN/OUT/ON a given triangle?

∗ Sign determination

• Upshot
∗ Knowing zero (and sign) is necessary for computing correct geometry

KIAS Zero Workshop July 19-21, 2007

19Points and Lines

• Simple geometric test:
∗ Is a point P on a line L?

•

P

L′
L

• P is on L ⇔ ax0 + by0 + c = 0
∗ L : aX + bY + c = 0

∗ P : (x0, y0)

• In Meshing Applications
∗ Point Classification Problem: Is P IN/OUT/ON a given triangle?

∗ Sign determination

• Upshot
∗ Knowing zero (and sign) is necessary for computing correct geometry

KIAS Zero Workshop July 19-21, 2007

19Points and Lines

• Simple geometric test:
∗ Is a point P on a line L?

•

P

L′
L

• P is on L ⇔ ax0 + by0 + c = 0
∗ L : aX + bY + c = 0

∗ P : (x0, y0)

• In Meshing Applications
∗ Point Classification Problem: Is P IN/OUT/ON a given triangle?

∗ Sign determination

• Upshot
∗ Knowing zero (and sign) is necessary for computing correct geometry

KIAS Zero Workshop July 19-21, 2007

19Points and Lines

• Simple geometric test:
∗ Is a point P on a line L?

•

P

L′
L

• P is on L ⇔ ax0 + by0 + c = 0
∗ L : aX + bY + c = 0

∗ P : (x0, y0)

• In Meshing Applications
∗ Point Classification Problem: Is P IN/OUT/ON a given triangle?

∗ Sign determination

• Upshot
∗ Knowing zero (and sign) is necessary for computing correct geometry

KIAS Zero Workshop July 19-21, 2007

19Points and Lines

• Simple geometric test:
∗ Is a point P on a line L?

•

P

L′
L

• P is on L ⇔ ax0 + by0 + c = 0
∗ L : aX + bY + c = 0

∗ P : (x0, y0)

• In Meshing Applications
∗ Point Classification Problem: Is P IN/OUT/ON a given triangle?

∗ Sign determination

• Upshot
∗ Knowing zero (and sign) is necessary for computing correct geometry

KIAS Zero Workshop July 19-21, 2007

19Points and Lines

• Simple geometric test:
∗ Is a point P on a line L?

•

P

L′
L

• P is on L ⇔ ax0 + by0 + c = 0
∗ L : aX + bY + c = 0

∗ P : (x0, y0)

• In Meshing Applications
∗ Point Classification Problem: Is P IN/OUT/ON a given triangle?

∗ Sign determination

• Upshot
∗ Knowing zero (and sign) is necessary for computing correct geometry

KIAS Zero Workshop July 19-21, 2007

20

KIAS Zero Workshop July 19-21, 2007

21Again, What is Geometry?

• Geometric vein permeates all of Mathematics
∗ Number theory, algebraic & differential geometry, topology, probability, ...

• What is Geometry?
∗ Euclid: Axiomatic Approach

∗ Descartes: Algebraization of Geometry

∗ Klein: Transformation Groups

∗ Hilbert: Logical Foundations

∗ Tarski: Elementary Geometry and Algebra

∗ Erdos: Combinatorial Vein

• Computational Perspective:
∗ (1) Geometry is comprised of discrete relations among geometric objects

∗ (2) Computational Geometry computes these relations, by deciding zero & sign

of expressions

• Exact Geometric Computation (EGC):
— an approach requiring error-free zero & sign computation

KIAS Zero Workshop July 19-21, 2007

21Again, What is Geometry?

• Geometric vein permeates all of Mathematics
∗ Number theory, algebraic & differential geometry, topology, probability, ...

• What is Geometry?
∗ Euclid: Axiomatic Approach

∗ Descartes: Algebraization of Geometry

∗ Klein: Transformation Groups

∗ Hilbert: Logical Foundations

∗ Tarski: Elementary Geometry and Algebra

∗ Erdos: Combinatorial Vein

• Computational Perspective:
∗ (1) Geometry is comprised of discrete relations among geometric objects

∗ (2) Computational Geometry computes these relations, by deciding zero & sign

of expressions

• Exact Geometric Computation (EGC):
— an approach requiring error-free zero & sign computation

KIAS Zero Workshop July 19-21, 2007

21Again, What is Geometry?

• Geometric vein permeates all of Mathematics
∗ Number theory, algebraic & differential geometry, topology, probability, ...

• What is Geometry?
∗ Euclid: Axiomatic Approach

∗ Descartes: Algebraization of Geometry

∗ Klein: Transformation Groups

∗ Hilbert: Logical Foundations

∗ Tarski: Elementary Geometry and Algebra

∗ Erdos: Combinatorial Vein

• Computational Perspective:
∗ (1) Geometry is comprised of discrete relations among geometric objects

∗ (2) Computational Geometry computes these relations, by deciding zero & sign

of expressions

• Exact Geometric Computation (EGC):
— an approach requiring error-free zero & sign computation

KIAS Zero Workshop July 19-21, 2007

21Again, What is Geometry?

• Geometric vein permeates all of Mathematics
∗ Number theory, algebraic & differential geometry, topology, probability, ...

• What is Geometry?
∗ Euclid: Axiomatic Approach

∗ Descartes: Algebraization of Geometry

∗ Klein: Transformation Groups

∗ Hilbert: Logical Foundations

∗ Tarski: Elementary Geometry and Algebra

∗ Erdos: Combinatorial Vein

• Computational Perspective:
∗ (1) Geometry is comprised of discrete relations among geometric objects

∗ (2) Computational Geometry computes these relations, by deciding zero & sign

of expressions

• Exact Geometric Computation (EGC):
— an approach requiring error-free zero & sign computation

KIAS Zero Workshop July 19-21, 2007

21Again, What is Geometry?

• Geometric vein permeates all of Mathematics
∗ Number theory, algebraic & differential geometry, topology, probability, ...

• What is Geometry?
∗ Euclid: Axiomatic Approach

∗ Descartes: Algebraization of Geometry

∗ Klein: Transformation Groups

∗ Hilbert: Logical Foundations

∗ Tarski: Elementary Geometry and Algebra

∗ Erdos: Combinatorial Vein

• Computational Perspective:
∗ (1) Geometry is comprised of discrete relations among geometric objects

∗ (2) Computational Geometry computes these relations, by deciding zero & sign

of expressions

• Exact Geometric Computation (EGC):
— an approach requiring error-free zero & sign computation

KIAS Zero Workshop July 19-21, 2007

22Robust Geometric Computation
• Widespread numerical nonrobustness issues in computational science and

engineering
∗ Computer Science’s dirty secret...

• Geometric Computation is inherently discontinuous

• Upshot: if we can efficiently solve the zero problem
∗ ... then we can produce robust software

KIAS Zero Workshop July 19-21, 2007

22Robust Geometric Computation
• Widespread numerical nonrobustness issues in computational science and

engineering
∗ Computer Science’s dirty secret...

• Geometric Computation is inherently discontinuous

• Upshot: if we can efficiently solve the zero problem
∗ ... then we can produce robust software

KIAS Zero Workshop July 19-21, 2007

22Robust Geometric Computation
• Widespread numerical nonrobustness issues in computational science and

engineering
∗ Computer Science’s dirty secret...

• Geometric Computation is inherently discontinuous

• Upshot: if we can efficiently solve the zero problem
∗ ... then we can produce robust software

KIAS Zero Workshop July 19-21, 2007

22Robust Geometric Computation
• Widespread numerical nonrobustness issues in computational science and

engineering
∗ Computer Science’s dirty secret...

• Geometric Computation is inherently discontinuous

• Upshot: if we can efficiently solve the zero problem
∗ ... then we can produce robust software

KIAS Zero Workshop July 19-21, 2007

22Robust Geometric Computation
• Widespread numerical nonrobustness issues in computational science and

engineering
∗ Computer Science’s dirty secret...

• Geometric Computation is inherently discontinuous

• Upshot: if we can efficiently solve the zero problem
∗ ... then we can produce robust software

KIAS Zero Workshop July 19-21, 2007

22Robust Geometric Computation
• Widespread numerical nonrobustness issues in computational science and

engineering
∗ Computer Science’s dirty secret...

• Geometric Computation is inherently discontinuous

• Why EGC?
∗ (1) Inconsistencies cause nonrobustness

∗ (2) EGC ensures exact, hence consistent, geometry

∗ (3) Most successful of known approaches

• Upshot: if we can efficiently solve the zero problem
∗ ... then we can produce robust software

KIAS Zero Workshop July 19-21, 2007

22Robust Geometric Computation
• Widespread numerical nonrobustness issues in computational science and

engineering
∗ Computer Science’s dirty secret...

• Geometric Computation is inherently discontinuous

• Why EGC?
∗ (1) Inconsistencies cause nonrobustness

∗ (2) EGC ensures exact, hence consistent, geometry

∗ (3) Most successful of known approaches

• Upshot: if we can efficiently solve the zero problem
∗ ... then we can produce robust software

KIAS Zero Workshop July 19-21, 2007

22Robust Geometric Computation
• Widespread numerical nonrobustness issues in computational science and

engineering
∗ Computer Science’s dirty secret...

• Geometric Computation is inherently discontinuous

• Why EGC?
∗ (1) Inconsistencies cause nonrobustness

∗ (2) EGC ensures exact, hence consistent, geometry

∗ (3) Most successful of known approaches

• Upshot: if we can efficiently solve the zero problem
∗ ... then we can produce robust software

KIAS Zero Workshop July 19-21, 2007

23Other Applications of Zero Problems

• Surface-Surface Intersection (SSI) (Farouki)
∗ “The single greatest cause of poor reliability of CAD systems is lack of topologically

consistent surface intersection algorithms”.

∗ – consensus, Workshop on Math. Foundations of CAD, MSRI, Berkeley (1999)

• Computer-Aided Theorem Proving
∗ E.g., Kepler’s conjecture (T. Hale)

• Automated Theorem Proving (D.M.Wang)
∗ Randomized Testing, Proving by Example, etc

• Table Maker’s Dilemma (J-M.Muller)

• Test Suites for Statistical Software (B.D.McCullough)

• Guaranteed Precision Arithmetic software
∗ E.g., Core Library, LEDA

KIAS Zero Workshop July 19-21, 2007

23Other Applications of Zero Problems

• Surface-Surface Intersection (SSI) (Farouki)
∗ “The single greatest cause of poor reliability of CAD systems is lack of topologically

consistent surface intersection algorithms”.

∗ – consensus, Workshop on Math. Foundations of CAD, MSRI, Berkeley (1999)

• Computer-Aided Theorem Proving
∗ E.g., Kepler’s conjecture (T. Hale)

• Automated Theorem Proving (D.M.Wang)
∗ Randomized Testing, Proving by Example, etc

• Table Maker’s Dilemma (J-M.Muller)

• Test Suites for Statistical Software (B.D.McCullough)

• Guaranteed Precision Arithmetic software
∗ E.g., Core Library, LEDA

KIAS Zero Workshop July 19-21, 2007

23Other Applications of Zero Problems

• Surface-Surface Intersection (SSI) (Farouki)
∗ “The single greatest cause of poor reliability of CAD systems is lack of topologically

consistent surface intersection algorithms”.

∗ – consensus, Workshop on Math. Foundations of CAD, MSRI, Berkeley (1999)

• Computer-Aided Theorem Proving
∗ E.g., Kepler’s conjecture (T. Hale)

• Automated Theorem Proving (D.M.Wang)
∗ Randomized Testing, Proving by Example, etc

• Table Maker’s Dilemma (J-M.Muller)

• Test Suites for Statistical Software (B.D.McCullough)

• Guaranteed Precision Arithmetic software
∗ E.g., Core Library, LEDA

KIAS Zero Workshop July 19-21, 2007

23Other Applications of Zero Problems

• Surface-Surface Intersection (SSI) (Farouki)
∗ “The single greatest cause of poor reliability of CAD systems is lack of topologically

consistent surface intersection algorithms”.

∗ – consensus, Workshop on Math. Foundations of CAD, MSRI, Berkeley (1999)

• Computer-Aided Theorem Proving
∗ E.g., Kepler’s conjecture (T. Hale)

• Automated Theorem Proving (D.M.Wang)
∗ Randomized Testing, Proving by Example, etc

• Table Maker’s Dilemma (J-M.Muller)

• Test Suites for Statistical Software (B.D.McCullough)

• Guaranteed Precision Arithmetic software
∗ E.g., Core Library, LEDA

KIAS Zero Workshop July 19-21, 2007

23Other Applications of Zero Problems

• Surface-Surface Intersection (SSI) (Farouki)
∗ “The single greatest cause of poor reliability of CAD systems is lack of topologically

consistent surface intersection algorithms”.

∗ – consensus, Workshop on Math. Foundations of CAD, MSRI, Berkeley (1999)

• Computer-Aided Theorem Proving
∗ E.g., Kepler’s conjecture (T. Hale)

• Automated Theorem Proving (D.M.Wang)
∗ Randomized Testing, Proving by Example, etc

• Table Maker’s Dilemma (J-M.Muller)

• Test Suites for Statistical Software (B.D.McCullough)

• Guaranteed Precision Arithmetic software
∗ E.g., Core Library, LEDA

KIAS Zero Workshop July 19-21, 2007

23Other Applications of Zero Problems

• Surface-Surface Intersection (SSI) (Farouki)
∗ “The single greatest cause of poor reliability of CAD systems is lack of topologically

consistent surface intersection algorithms”.

∗ – consensus, Workshop on Math. Foundations of CAD, MSRI, Berkeley (1999)

• Computer-Aided Theorem Proving
∗ E.g., Kepler’s conjecture (T. Hale)

• Automated Theorem Proving (D.M.Wang)
∗ Randomized Testing, Proving by Example, etc

• Table Maker’s Dilemma (J-M.Muller)

• Test Suites for Statistical Software (B.D.McCullough)

• Guaranteed Precision Arithmetic software
∗ E.g., Core Library, LEDA

KIAS Zero Workshop July 19-21, 2007

23Other Applications of Zero Problems

• Surface-Surface Intersection (SSI) (Farouki)
∗ “The single greatest cause of poor reliability of CAD systems is lack of topologically

consistent surface intersection algorithms”.

∗ – consensus, Workshop on Math. Foundations of CAD, MSRI, Berkeley (1999)

• Computer-Aided Theorem Proving
∗ E.g., Kepler’s conjecture (T. Hale)

• Automated Theorem Proving (D.M.Wang)
∗ Randomized Testing, Proving by Example, etc

• Table Maker’s Dilemma (J-M.Muller)

• Test Suites for Statistical Software (B.D.McCullough)

• Guaranteed Precision Arithmetic software
∗ E.g., Core Library, LEDA

KIAS Zero Workshop July 19-21, 2007

24

PART III.
On Zero Bounds and Adaptivity

“It can be of no practical use to know that π is irrational, but if we can
know, it surely would be intolerable not to know.”

— E.C. Titchmarsh

KIAS Zero Workshop July 19-21, 2007

25The Numerical Halting Problem

• To decide if e = 0, we compute approximations
∗ e1, e2, e3, . . .

∗ where e = en ± 2−n

• OUTPUT “e *= 0” when |en| > 2−n

• What if e = 0?

• The ZERO PROBLEM is the continuous analogue of
the HALTING problem

∗ — like the halting problem, ZERO is “semi-decidable”

• The HALTING problem is complete for Prec
We will show the continuous analogue.

KIAS Zero Workshop July 19-21, 2007

25The Numerical Halting Problem

• To decide if e = 0, we compute approximations
∗ e1, e2, e3, . . .

∗ where e = en ± 2−n

• OUTPUT “e *= 0” when |en| > 2−n

• What if e = 0?

• The ZERO PROBLEM is the continuous analogue of
the HALTING problem

∗ — like the halting problem, ZERO is “semi-decidable”

• The HALTING problem is complete for Prec
We will show the continuous analogue.

KIAS Zero Workshop July 19-21, 2007

25The Numerical Halting Problem

• To decide if e = 0, we compute approximations
∗ e1, e2, e3, . . .

∗ where e = en ± 2−n

• OUTPUT “e *= 0” when |en| > 2−n

• What if e = 0?

• The ZERO PROBLEM is the continuous analogue of
the HALTING problem

∗ — like the halting problem, ZERO is “semi-decidable”

• The HALTING problem is complete for Prec
We will show the continuous analogue.

KIAS Zero Workshop July 19-21, 2007

25The Numerical Halting Problem

• To decide if e = 0, we compute approximations
∗ e1, e2, e3, . . .

∗ where e = en ± 2−n

• OUTPUT “e *= 0” when |en| > 2−n

• What if e = 0?

• The ZERO PROBLEM is the continuous analogue of
the HALTING problem

∗ — like the halting problem, ZERO is “semi-decidable”

• The HALTING problem is complete for Prec
We will show the continuous analogue.

KIAS Zero Workshop July 19-21, 2007

25The Numerical Halting Problem

• To decide if e = 0, we compute approximations
∗ e1, e2, e3, . . .

∗ where e = en ± 2−n

• OUTPUT “e *= 0” when |en| > 2−n

• What if e = 0?

• The ZERO PROBLEM is the continuous analogue of
the HALTING problem

∗ — like the halting problem, ZERO is “semi-decidable”

• The HALTING problem is complete for Prec
We will show the continuous analogue.

KIAS Zero Workshop July 19-21, 2007

25The Numerical Halting Problem

• To decide if e = 0, we compute approximations
∗ e1, e2, e3, . . .

∗ where e = en ± 2−n

• OUTPUT “e *= 0” when |en| > 2−n

• What if e = 0?

• The ZERO PROBLEM is the continuous analogue of
the HALTING problem

∗ — like the halting problem, ZERO is “semi-decidable”

• The HALTING problem is complete for Prec
We will show the continuous analogue.

KIAS Zero Workshop July 19-21, 2007

26Two Ways to to Use Zero Bounds

• Suppose we have B(e) > 0 such that:
∗ if Val(e) .= 0, then |Val(e)| > B(e)

∗ B is a (conditional) zero bound function

• METHOD 1: Compute approximation ẽ for e so that |ẽ− e| < B(e)/2
∗ If |ẽ| ≥ B(e), then OUTPUT “e .= 0”

∗ Otherwise, OUTPUT “e = 0”

• METHOD 2: Compute sequence (e1, e2, e3, . . .) as before
∗ If |en| > 2−n , OUTPUT “e .= 0”

∗ If 2−n < B(e)
2 , OUTPUT “e = 0”

• Semi-adaptivity of METHOD 2
∗ if x .= y , the complexity depends on − log2 |x− y|

KIAS Zero Workshop July 19-21, 2007

26Two Ways to to Use Zero Bounds

• Suppose we have B(e) > 0 such that:
∗ if Val(e) .= 0, then |Val(e)| > B(e)

∗ B is a (conditional) zero bound function

• METHOD 1: Compute approximation ẽ for e so that |ẽ− e| < B(e)/2
∗ If |ẽ| ≥ B(e), then OUTPUT “e .= 0”

∗ Otherwise, OUTPUT “e = 0”

• METHOD 2: Compute sequence (e1, e2, e3, . . .) as before
∗ If |en| > 2−n , OUTPUT “e .= 0”

∗ If 2−n < B(e)
2 , OUTPUT “e = 0”

• Semi-adaptivity of METHOD 2
∗ if x .= y , the complexity depends on − log2 |x− y|

KIAS Zero Workshop July 19-21, 2007

26Two Ways to to Use Zero Bounds

• Suppose we have B(e) > 0 such that:
∗ if Val(e) .= 0, then |Val(e)| > B(e)

∗ B is a (conditional) zero bound function

• METHOD 1: Compute approximation ẽ for e so that |ẽ− e| < B(e)/2
∗ If |ẽ| ≥ B(e), then OUTPUT “e .= 0”

∗ Otherwise, OUTPUT “e = 0”

• METHOD 2: Compute sequence (e1, e2, e3, . . .) as before
∗ If |en| > 2−n , OUTPUT “e .= 0”

∗ If 2−n < B(e)
2 , OUTPUT “e = 0”

• Semi-adaptivity of METHOD 2
∗ if x .= y , the complexity depends on − log2 |x− y|

KIAS Zero Workshop July 19-21, 2007

26Two Ways to to Use Zero Bounds

• Suppose we have B(e) > 0 such that:
∗ if Val(e) .= 0, then |Val(e)| > B(e)

∗ B is a (conditional) zero bound function

• METHOD 1: Compute approximation ẽ for e so that |ẽ− e| < B(e)/2
∗ If |ẽ| ≥ B(e), then OUTPUT “e .= 0”

∗ Otherwise, OUTPUT “e = 0”

• METHOD 2: Compute sequence (e1, e2, e3, . . .) as before
∗ If |en| > 2−n , OUTPUT “e .= 0”

∗ If 2−n < B(e)
2 , OUTPUT “e = 0”

• Semi-adaptivity of METHOD 2
∗ if x .= y , the complexity depends on − log2 |x− y|

KIAS Zero Workshop July 19-21, 2007

26Two Ways to to Use Zero Bounds

• Suppose we have B(e) > 0 such that:
∗ if Val(e) .= 0, then |Val(e)| > B(e)

∗ B is a (conditional) zero bound function

• METHOD 1: Compute approximation ẽ for e so that |ẽ− e| < B(e)/2
∗ If |ẽ| ≥ B(e), then OUTPUT “e .= 0”

∗ Otherwise, OUTPUT “e = 0”

• METHOD 2: Compute sequence (e1, e2, e3, . . .) as before
∗ If |en| > 2−n , OUTPUT “e .= 0”

∗ If 2−n < B(e)
2 , OUTPUT “e = 0”

• Semi-adaptivity of METHOD 2
∗ if x .= y , the complexity depends on − log2 |x− y|

KIAS Zero Workshop July 19-21, 2007

27Why Adaptivity Algorithms

• Adaptive Complexity
∗ (1) The numerical method (B) is adaptive...

∗ (2) Algebraic methods are inherently non-adaptive, too inefficient

∗ (3) Only algebraic information: Zero Bounds

• Other advantages:
∗ simpler algorithms

∗ exploits geometry

∗ algorithms are independent of bounds

• General trend in computer algebra
∗ (1) PROBLEM: most adaptive algorithms are incomplete

∗ (2) E.g., no known adaptive complete algorithm for topological analysis of curve

∗ (3) ONE SOLUTION: Hybrid algorithms

• OPEN PROBLEM:
Construct Complete and Fully Adaptive Algorithms for basic problems

∗ E.g., topological analysis of curves

KIAS Zero Workshop July 19-21, 2007

27Why Adaptivity Algorithms

• Adaptive Complexity
∗ (1) The numerical method (B) is adaptive...

∗ (2) Algebraic methods are inherently non-adaptive, too inefficient

∗ (3) Only algebraic information: Zero Bounds

• Other advantages:
∗ simpler algorithms

∗ exploits geometry

∗ algorithms are independent of bounds

• General trend in computer algebra
∗ (1) PROBLEM: most adaptive algorithms are incomplete

∗ (2) E.g., no known adaptive complete algorithm for topological analysis of curve

∗ (3) ONE SOLUTION: Hybrid algorithms

• OPEN PROBLEM:
Construct Complete and Fully Adaptive Algorithms for basic problems

∗ E.g., topological analysis of curves

KIAS Zero Workshop July 19-21, 2007

27Why Adaptivity Algorithms

• Adaptive Complexity
∗ (1) The numerical method (B) is adaptive...

∗ (2) Algebraic methods are inherently non-adaptive, too inefficient

∗ (3) Only algebraic information: Zero Bounds

• Other advantages:
∗ simpler algorithms

∗ exploits geometry

∗ algorithms are independent of bounds

• General trend in computer algebra
∗ (1) PROBLEM: most adaptive algorithms are incomplete

∗ (2) E.g., no known adaptive complete algorithm for topological analysis of curve

∗ (3) ONE SOLUTION: Hybrid algorithms

• OPEN PROBLEM:
Construct Complete and Fully Adaptive Algorithms for basic problems

∗ E.g., topological analysis of curves

KIAS Zero Workshop July 19-21, 2007

27Why Adaptivity Algorithms

• Adaptive Complexity
∗ (1) The numerical method (B) is adaptive...

∗ (2) Algebraic methods are inherently non-adaptive, too inefficient

∗ (3) Only algebraic information: Zero Bounds

• Other advantages:
∗ simpler algorithms

∗ exploits geometry

∗ algorithms are independent of bounds

• General trend in computer algebra
∗ (1) PROBLEM: most adaptive algorithms are incomplete

∗ (2) E.g., no known adaptive complete algorithm for topological analysis of curve

∗ (3) ONE SOLUTION: Hybrid algorithms

• OPEN PROBLEM:
Construct Complete and Fully Adaptive Algorithms for basic problems

∗ E.g., topological analysis of curves

KIAS Zero Workshop July 19-21, 2007

27Why Adaptivity Algorithms

• Adaptive Complexity
∗ (1) The numerical method (B) is adaptive...

∗ (2) Algebraic methods are inherently non-adaptive, too inefficient

∗ (3) Only algebraic information: Zero Bounds

• Other advantages:
∗ simpler algorithms

∗ exploits geometry

∗ algorithms are independent of bounds

• General trend in computer algebra
∗ (1) PROBLEM: most adaptive algorithms are incomplete

∗ (2) E.g., no known adaptive complete algorithm for topological analysis of curve

∗ (3) ONE SOLUTION: Hybrid algorithms

• OPEN PROBLEM:
Construct Complete and Fully Adaptive Algorithms for basic problems

∗ E.g., topological analysis of curves

KIAS Zero Workshop July 19-21, 2007

28Where do we get Zero Bounds?

• Classical Root Bounds
∗ Constructive Root Bounds

• BFMS Bound
∗ B(e) = 1

L(e)U(e)D(e)2−1

e U(e) L(e)

1. rational a/b a b
2. e1 ± e2 U(e1)L(e2) + L(e1)U(e2) L(e1)L(e2)
3. e1 × e2 U(e1)U(e2) L(e1)L(e2)
4. e1 ÷ e2 U(e1)L(e2) L(e1)U(e2)

5. k
√

e1
k
√

U(e1)
k
√

L(e1)

• Other Constructive Bounds:
BFMSS, Mahler Measure, Li-Yap, k-ary, etc

KIAS Zero Workshop July 19-21, 2007

28Where do we get Zero Bounds?

• Classical Root Bounds
∗ Constructive Root Bounds

• BFMS Bound
∗ B(e) = 1

L(e)U(e)D(e)2−1

e U(e) L(e)

1. rational a/b a b
2. e1 ± e2 U(e1)L(e2) + L(e1)U(e2) L(e1)L(e2)
3. e1 × e2 U(e1)U(e2) L(e1)L(e2)
4. e1 ÷ e2 U(e1)L(e2) L(e1)U(e2)

5. k
√

e1
k
√

U(e1)
k
√

L(e1)

• Other Constructive Bounds:
BFMSS, Mahler Measure, Li-Yap, k-ary, etc

KIAS Zero Workshop July 19-21, 2007

28Where do we get Zero Bounds?

• Classical Root Bounds
∗ Constructive Root Bounds

• BFMS Bound
∗ B(e) = 1

L(e)U(e)D(e)2−1

e U(e) L(e)

1. rational a/b a b
2. e1 ± e2 U(e1)L(e2) + L(e1)U(e2) L(e1)L(e2)
3. e1 × e2 U(e1)U(e2) L(e1)L(e2)
4. e1 ÷ e2 U(e1)L(e2) L(e1)U(e2)

5. k
√

e1
k
√

U(e1)
k
√

L(e1)

• Other Constructive Bounds:
BFMSS, Mahler Measure, Li-Yap, k-ary, etc

KIAS Zero Workshop July 19-21, 2007

28Where do we get Zero Bounds?

• Classical Root Bounds
∗ Constructive Root Bounds

• BFMS Bound
∗ B(e) = 1

L(e)U(e)D(e)2−1

e U(e) L(e)

1. rational a/b a b
2. e1 ± e2 U(e1)L(e2) + L(e1)U(e2) L(e1)L(e2)
3. e1 × e2 U(e1)U(e2) L(e1)L(e2)
4. e1 ÷ e2 U(e1)L(e2) L(e1)U(e2)

5. k
√

e1
k
√

U(e1)
k
√

L(e1)

• Other Constructive Bounds:
BFMSS, Mahler Measure, Li-Yap, k-ary, etc

KIAS Zero Workshop July 19-21, 2007

29The Central Algorithm

• Guaranteed precision computation
∗ Viewed as a generalization of EGC

• Basic idea:
Each Operator f ∈ Ω is computed by Rf

∗ Precision (a priori error) is driven down

∗ Approximation (+ a posteriori error) is propagated up

∗ Rf is applied to approximations, and propagated up (unless)

•

Precision in x Precision in y Operation Precision

z = x ± y p + 2 p + 2 ∞
z = x× y p + 2 + µ+(y) p + 1 + µ+(x) ∞
z = x/y p + 2− µ−(y) max{1− µ−(y), p + 1

p + 2− 2µ−(y) + 2µ+(x)} p + 1

z =
√

x max{p + 1, 1− µ−(x)/2 p + 1

z = exp x max{1, p + 2 + 2µ+(x)+1} p + 1

z = log x max{1− µ−(x), p + 2− µ−(x)} p + 1

KIAS Zero Workshop July 19-21, 2007

29The Central Algorithm

• Guaranteed precision computation
∗ Viewed as a generalization of EGC

• Basic idea:
Each Operator f ∈ Ω is computed by Rf

∗ Precision (a priori error) is driven down

∗ Approximation (+ a posteriori error) is propagated up

∗ Rf is applied to approximations, and propagated up (unless)

•

Precision in x Precision in y Operation Precision

z = x ± y p + 2 p + 2 ∞
z = x× y p + 2 + µ+(y) p + 1 + µ+(x) ∞
z = x/y p + 2− µ−(y) max{1− µ−(y), p + 1

p + 2− 2µ−(y) + 2µ+(x)} p + 1

z =
√

x max{p + 1, 1− µ−(x)/2 p + 1

z = exp x max{1, p + 2 + 2µ+(x)+1} p + 1

z = log x max{1− µ−(x), p + 2− µ−(x)} p + 1

KIAS Zero Workshop July 19-21, 2007

29The Central Algorithm

• Guaranteed precision computation
∗ Viewed as a generalization of EGC

• Basic idea:
Each Operator f ∈ Ω is computed by Rf

∗ Precision (a priori error) is driven down

∗ Approximation (+ a posteriori error) is propagated up

∗ Rf is applied to approximations, and propagated up (unless)

•

Precision in x Precision in y Operation Precision

z = x ± y p + 2 p + 2 ∞
z = x× y p + 2 + µ+(y) p + 1 + µ+(x) ∞
z = x/y p + 2− µ−(y) max{1− µ−(y), p + 1

p + 2− 2µ−(y) + 2µ+(x)} p + 1

z =
√

x max{p + 1, 1− µ−(x)/2 p + 1

z = exp x max{1, p + 2 + 2µ+(x)+1} p + 1

z = log x max{1− µ−(x), p + 2− µ−(x)} p + 1

KIAS Zero Workshop July 19-21, 2007

29The Central Algorithm

• Guaranteed precision computation
∗ Viewed as a generalization of EGC

• Basic idea:
Each Operator f ∈ Ω is computed by Rf

∗ Precision (a priori error) is driven down

∗ Approximation (+ a posteriori error) is propagated up

∗ Rf is applied to approximations, and propagated up (unless)

•

Precision in x Precision in y Operation Precision

z = x ± y p + 2 p + 2 ∞
z = x× y p + 2 + µ+(y) p + 1 + µ+(x) ∞
z = x/y p + 2− µ−(y) max{1− µ−(y), p + 1

p + 2− 2µ−(y) + 2µ+(x)} p + 1

z =
√

x max{p + 1, 1− µ−(x)/2 p + 1

z = exp x max{1, p + 2 + 2µ+(x)+1} p + 1

z = log x max{1− µ−(x), p + 2− µ−(x)} p + 1

KIAS Zero Workshop July 19-21, 2007

30• Cast of Characters
Three Muskeeters and a friend:

∗ (A) α(e; p) — absolute approximation

∗ (M) µ+(e) — upper bound on µ(e) = lg |Val(e)|
∗ (S) sign(e) — sign of Val(e)

∗ (B) β(e) — root bound function

• OPEN PROBLEM: What is the optimal algorithm for evaluation?

KIAS Zero Workshop July 19-21, 2007

30• Cast of Characters
Three Muskeeters and a friend:

∗ (A) α(e; p) — absolute approximation

∗ (M) µ+(e) — upper bound on µ(e) = lg |Val(e)|
∗ (S) sign(e) — sign of Val(e)

∗ (B) β(e) — root bound function

• OPEN PROBLEM: What is the optimal algorithm for evaluation?

KIAS Zero Workshop July 19-21, 2007

30• Cast of Characters
Three Muskeeters and a friend:

∗ (A) α(e; p) — absolute approximation

∗ (M) µ+(e) — upper bound on µ(e) = lg |Val(e)|
∗ (S) sign(e) — sign of Val(e)

∗ (B) β(e) — root bound function

• OPEN PROBLEM: What is the optimal algorithm for evaluation?

KIAS Zero Workshop July 19-21, 2007

31Transcendental Number Theory

• Another conditional zero bound:
B(e) = 1

∗ (Fundamental Theorem of TNT)

• How do you prove that β =
∑∞

n=0(2/3)2
n

is irrational?

• Outline of TNT (D.Masser)
∗ (AP) Construction of Auxilliary Polynomial

∗ (UB) Obtaining an upper bound

∗ (LB) Obtaining a lower bound

∗ (NV) Proving non-vanishing

• Let βn =
∑n

n=0(2/3)2
n
, Rn = β − βn

∗ (AP) Let P (X, Y) = 2XY 2 + 4XY − 3Y 2 + X − Y

∗ (UB) |αn| < (1/10)2n+1
where |P ((2/3)2n+1

, Rn)| < (1/10)2n+1

∗ (LB) If β = r/s and αn .= 0, then |P ((2/3)2n+1
, Rn)| ≥ s−2(1/9)2n+1

∗ (NV) αn .= 0

• From irrationality/transcendence to transcendence measures

KIAS Zero Workshop July 19-21, 2007

31Transcendental Number Theory

• Another conditional zero bound:
B(e) = 1

∗ (Fundamental Theorem of TNT)

• How do you prove that β =
∑∞

n=0(2/3)2
n

is irrational?

• Outline of TNT (D.Masser)
∗ (AP) Construction of Auxilliary Polynomial

∗ (UB) Obtaining an upper bound

∗ (LB) Obtaining a lower bound

∗ (NV) Proving non-vanishing

• Let βn =
∑n

n=0(2/3)2
n
, Rn = β − βn

∗ (AP) Let P (X, Y) = 2XY 2 + 4XY − 3Y 2 + X − Y

∗ (UB) |αn| < (1/10)2n+1
where |P ((2/3)2n+1

, Rn)| < (1/10)2n+1

∗ (LB) If β = r/s and αn .= 0, then |P ((2/3)2n+1
, Rn)| ≥ s−2(1/9)2n+1

∗ (NV) αn .= 0

• From irrationality/transcendence to transcendence measures

KIAS Zero Workshop July 19-21, 2007

31Transcendental Number Theory

• Another conditional zero bound:
B(e) = 1

∗ (Fundamental Theorem of TNT)

• How do you prove that β =
∑∞

n=0(2/3)2
n

is irrational?

• Outline of TNT (D.Masser)
∗ (AP) Construction of Auxilliary Polynomial

∗ (UB) Obtaining an upper bound

∗ (LB) Obtaining a lower bound

∗ (NV) Proving non-vanishing

• Let βn =
∑n

n=0(2/3)2
n
, Rn = β − βn

∗ (AP) Let P (X, Y) = 2XY 2 + 4XY − 3Y 2 + X − Y

∗ (UB) |αn| < (1/10)2n+1
where |P ((2/3)2n+1

, Rn)| < (1/10)2n+1

∗ (LB) If β = r/s and αn .= 0, then |P ((2/3)2n+1
, Rn)| ≥ s−2(1/9)2n+1

∗ (NV) αn .= 0

• From irrationality/transcendence to transcendence measures

KIAS Zero Workshop July 19-21, 2007

31Transcendental Number Theory

• Another conditional zero bound:
B(e) = 1

∗ (Fundamental Theorem of TNT)

• How do you prove that β =
∑∞

n=0(2/3)2
n

is irrational?

• Outline of TNT (D.Masser)
∗ (AP) Construction of Auxilliary Polynomial

∗ (UB) Obtaining an upper bound

∗ (LB) Obtaining a lower bound

∗ (NV) Proving non-vanishing

• Let βn =
∑n

n=0(2/3)2
n
, Rn = β − βn

∗ (AP) Let P (X, Y) = 2XY 2 + 4XY − 3Y 2 + X − Y

∗ (UB) |αn| < (1/10)2n+1
where |P ((2/3)2n+1

, Rn)| < (1/10)2n+1

∗ (LB) If β = r/s and αn .= 0, then |P ((2/3)2n+1
, Rn)| ≥ s−2(1/9)2n+1

∗ (NV) αn .= 0

• From irrationality/transcendence to transcendence measures

KIAS Zero Workshop July 19-21, 2007

31Transcendental Number Theory

• Another conditional zero bound:
B(e) = 1

∗ (Fundamental Theorem of TNT)

• How do you prove that β =
∑∞

n=0(2/3)2
n

is irrational?

• Outline of TNT (D.Masser)
∗ (AP) Construction of Auxilliary Polynomial

∗ (UB) Obtaining an upper bound

∗ (LB) Obtaining a lower bound

∗ (NV) Proving non-vanishing

• Let βn =
∑n

n=0(2/3)2
n
, Rn = β − βn

∗ (AP) Let P (X, Y) = 2XY 2 + 4XY − 3Y 2 + X − Y

∗ (UB) |αn| < (1/10)2n+1
where |P ((2/3)2n+1

, Rn)| < (1/10)2n+1

∗ (LB) If β = r/s and αn .= 0, then |P ((2/3)2n+1
, Rn)| ≥ s−2(1/9)2n+1

∗ (NV) αn .= 0

• From irrationality/transcendence to transcendence measures

KIAS Zero Workshop July 19-21, 2007

31Transcendental Number Theory

• Another conditional zero bound:
B(e) = 1

∗ (Fundamental Theorem of TNT)

• How do you prove that β =
∑∞

n=0(2/3)2
n

is irrational?

• Outline of TNT (D.Masser)
∗ (AP) Construction of Auxilliary Polynomial

∗ (UB) Obtaining an upper bound

∗ (LB) Obtaining a lower bound

∗ (NV) Proving non-vanishing

• Let βn =
∑n

n=0(2/3)2
n
, Rn = β − βn

∗ (AP) Let P (X, Y) = 2XY 2 + 4XY − 3Y 2 + X − Y

∗ (UB) |αn| < (1/10)2n+1
where |P ((2/3)2n+1

, Rn)| < (1/10)2n+1

∗ (LB) If β = r/s and αn .= 0, then |P ((2/3)2n+1
, Rn)| ≥ s−2(1/9)2n+1

∗ (NV) αn .= 0

• From irrationality/transcendence to transcendence measures

KIAS Zero Workshop July 19-21, 2007

32

KIAS Zero Workshop July 19-21, 2007

33

PART IV
On Foundations of Real Computation

“There is a substantial conflict between theoretical computer science and
numerical analysis. ... The conflict has at its roots another age-old

conflict, that between the continuous and the discrete. ”

— Blum, Cucker, Shub, Smale (1996, Manifesto)

KIAS Zero Workshop July 19-21, 2007

34Two Approaches to Real Computation

• Analytic Approach
∗ Turing(1936), Grzegorczyk(1955), Weihrauch, Ko, etc

∗ Real numbers represented by rapidly converging Cauchy sequences

∗ Extend Turing machines to compute with infinite input/output sequences

• Algebraic Approach
∗ Blum-Shub-Smale (BSS) model, Real RAMs

∗ Real numbers directly represented as atomic objects

∗ Real numbers are compared without error

∗ Algebraic operators are carried out without error

KIAS Zero Workshop July 19-21, 2007

34Two Approaches to Real Computation

• Analytic Approach
∗ Turing(1936), Grzegorczyk(1955), Weihrauch, Ko, etc

∗ Real numbers represented by rapidly converging Cauchy sequences

∗ Extend Turing machines to compute with infinite input/output sequences

• Algebraic Approach
∗ Blum-Shub-Smale (BSS) model, Real RAMs

∗ Real numbers directly represented as atomic objects

∗ Real numbers are compared without error

∗ Algebraic operators are carried out without error

KIAS Zero Workshop July 19-21, 2007

34Two Approaches to Real Computation

• Analytic Approach
∗ Turing(1936), Grzegorczyk(1955), Weihrauch, Ko, etc

∗ Real numbers represented by rapidly converging Cauchy sequences

∗ Extend Turing machines to compute with infinite input/output sequences

• Algebraic Approach
∗ Blum-Shub-Smale (BSS) model, Real RAMs

∗ Real numbers directly represented as atomic objects

∗ Real numbers are compared without error

∗ Algebraic operators are carried out without error

KIAS Zero Workshop July 19-21, 2007

35Where is the Zero Problem?

• Zero Problem is
∗ undecidable in Analytic Approach

∗ trivial in Algebraic Approach

∗ more nuanced in our Approximation Approach

• Other Issues
∗ (Analytic) Only continuous functions are computable (no geometry!)

∗ (Algebraic) Exponential function is not computable

∗ (Approximation) Composition is not automatic

• THEOREM: There existsR-approximable f, g such that their composition
f ◦ g is not A-approximable

KIAS Zero Workshop July 19-21, 2007

35Where is the Zero Problem?

• Zero Problem is
∗ undecidable in Analytic Approach

∗ trivial in Algebraic Approach

∗ more nuanced in our Approximation Approach

• Other Issues
∗ (Analytic) Only continuous functions are computable (no geometry!)

∗ (Algebraic) Exponential function is not computable

∗ (Approximation) Composition is not automatic

• THEOREM: There existsR-approximable f, g such that their composition
f ◦ g is not A-approximable

KIAS Zero Workshop July 19-21, 2007

35Where is the Zero Problem?

• Zero Problem is
∗ undecidable in Analytic Approach

∗ trivial in Algebraic Approach

∗ more nuanced in our Approximation Approach

• Other Issues
∗ (Analytic) Only continuous functions are computable (no geometry!)

∗ (Algebraic) Exponential function is not computable

∗ (Approximation) Composition is not automatic

• THEOREM: There existsR-approximable f, g such that their composition
f ◦ g is not A-approximable

KIAS Zero Workshop July 19-21, 2007

35Where is the Zero Problem?

• Zero Problem is
∗ undecidable in Analytic Approach

∗ trivial in Algebraic Approach

∗ more nuanced in our Approximation Approach

• Other Issues
∗ (Analytic) Only continuous functions are computable (no geometry!)

∗ (Algebraic) Exponential function is not computable

∗ (Approximation) Composition is not automatic

• THEOREM: There existsR-approximable f, g such that their composition
f ◦ g is not A-approximable

KIAS Zero Workshop July 19-21, 2007

36How We Solve Numerical Problems

• E.g., Solving a PDE model, A numerical optimization, etc

• STEP A:
∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

∗ Show that problem is solvable by Algorithm A

• STEP B:
∗ Implement Algorithm A as a Numerical Program B

∗ Account for numerical representation, errors, convergence, etc

∗ Specify the “correctness” criteria

KIAS Zero Workshop July 19-21, 2007

36How We Solve Numerical Problems

• E.g., Solving a PDE model, A numerical optimization, etc

• STEP A:
∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

∗ Show that problem is solvable by Algorithm A

• STEP B:
∗ Implement Algorithm A as a Numerical Program B

∗ Account for numerical representation, errors, convergence, etc

∗ Specify the “correctness” criteria

KIAS Zero Workshop July 19-21, 2007

36How We Solve Numerical Problems

• E.g., Solving a PDE model, A numerical optimization, etc

• STEP A:
∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

∗ Show that problem is solvable by Algorithm A

• STEP B:
∗ Implement Algorithm A as a Numerical Program B

∗ Account for numerical representation, errors, convergence, etc

∗ Specify the “correctness” criteria

KIAS Zero Workshop July 19-21, 2007

36How We Solve Numerical Problems

• E.g., Solving a PDE model, A numerical optimization, etc

• STEP A:
∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

∗ Show that problem is solvable by Algorithm A

• STEP B:
∗ Implement Algorithm A as a Numerical Program B

∗ Account for numerical representation, errors, convergence, etc

∗ Specify the “correctness” criteria

KIAS Zero Workshop July 19-21, 2007

37A New Synthesis

• Step A:
∗ Algorithm A belongs to an Algebraic Model (e.g., BSS Model)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:
∗ Program B belongs to some numerical model (Turing or Pointer Model)

• Critical Question:
∗ Can Algorithm A be implemented by some Program B?

• Validity:
Even numerical analysis books proceed to Step B via Step A

• The algebraic and numerical models play complementary roles!

KIAS Zero Workshop July 19-21, 2007

37A New Synthesis

• Step A:
∗ Algorithm A belongs to an Algebraic Model (e.g., BSS Model)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:
∗ Program B belongs to some numerical model (Turing or Pointer Model)

• Critical Question:
∗ Can Algorithm A be implemented by some Program B?

• Validity:
Even numerical analysis books proceed to Step B via Step A

• The algebraic and numerical models play complementary roles!

KIAS Zero Workshop July 19-21, 2007

37A New Synthesis

• Step A:
∗ Algorithm A belongs to an Algebraic Model (e.g., BSS Model)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:
∗ Program B belongs to some numerical model (Turing or Pointer Model)

• Critical Question:
∗ Can Algorithm A be implemented by some Program B?

• Validity:
Even numerical analysis books proceed to Step B via Step A

• The algebraic and numerical models play complementary roles!

KIAS Zero Workshop July 19-21, 2007

37A New Synthesis

• Step A:
∗ Algorithm A belongs to an Algebraic Model (e.g., BSS Model)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:
∗ Program B belongs to some numerical model (Turing or Pointer Model)

• Critical Question:
∗ Can Algorithm A be implemented by some Program B?

• Validity:
Even numerical analysis books proceed to Step B via Step A

• The algebraic and numerical models play complementary roles!

KIAS Zero Workshop July 19-21, 2007

37A New Synthesis

• Step A:
∗ Algorithm A belongs to an Algebraic Model (e.g., BSS Model)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:
∗ Program B belongs to some numerical model (Turing or Pointer Model)

• Critical Question:
∗ Can Algorithm A be implemented by some Program B?

• Validity:
Even numerical analysis books proceed to Step B via Step A

• The algebraic and numerical models play complementary roles!

KIAS Zero Workshop July 19-21, 2007

37A New Synthesis

• Step A:
∗ Algorithm A belongs to an Algebraic Model (e.g., BSS Model)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:
∗ Program B belongs to some numerical model (Turing or Pointer Model)

• Critical Question:
∗ Can Algorithm A be implemented by some Program B?

• Validity:
Even numerical analysis books proceed to Step B via Step A

• The algebraic and numerical models play complementary roles!

KIAS Zero Workshop July 19-21, 2007

38Transfer Theorem

• Algebraic Pointer Model:
∗ Schönhage’s Pointer Machines, augmented with algebraic operations from Ω

• Numerical Pointer Model:
∗ like the Algebraic Pointer Model,

but replace f ∈ Ω by Rf

• Approximation in the EGC sense
∗ Combinatorially exact, but numerically approximate

• THEOREM:
The following are equivalent:

∗ (I) ValΩ is R-approximable over Ω

∗ (II) For all problems F , if F is Ω-computable (in algebraic model) then F is

Ω-approximable (in numerical model).

• OPEN PROBLEM: Explore other transfer theorems

KIAS Zero Workshop July 19-21, 2007

38Transfer Theorem

• Algebraic Pointer Model:
∗ Schönhage’s Pointer Machines, augmented with algebraic operations from Ω

• Numerical Pointer Model:
∗ like the Algebraic Pointer Model,

but replace f ∈ Ω by Rf

• Approximation in the EGC sense
∗ Combinatorially exact, but numerically approximate

• THEOREM:
The following are equivalent:

∗ (I) ValΩ is R-approximable over Ω

∗ (II) For all problems F , if F is Ω-computable (in algebraic model) then F is

Ω-approximable (in numerical model).

• OPEN PROBLEM: Explore other transfer theorems

KIAS Zero Workshop July 19-21, 2007

38Transfer Theorem

• Algebraic Pointer Model:
∗ Schönhage’s Pointer Machines, augmented with algebraic operations from Ω

• Numerical Pointer Model:
∗ like the Algebraic Pointer Model,

but replace f ∈ Ω by Rf

• Approximation in the EGC sense
∗ Combinatorially exact, but numerically approximate

• THEOREM:
The following are equivalent:

∗ (I) ValΩ is R-approximable over Ω

∗ (II) For all problems F , if F is Ω-computable (in algebraic model) then F is

Ω-approximable (in numerical model).

• OPEN PROBLEM: Explore other transfer theorems

KIAS Zero Workshop July 19-21, 2007

38Transfer Theorem

• Algebraic Pointer Model:
∗ Schönhage’s Pointer Machines, augmented with algebraic operations from Ω

• Numerical Pointer Model:
∗ like the Algebraic Pointer Model,

but replace f ∈ Ω by Rf

• Approximation in the EGC sense
∗ Combinatorially exact, but numerically approximate

• THEOREM:
The following are equivalent:

∗ (I) ValΩ is R-approximable over Ω

∗ (II) For all problems F , if F is Ω-computable (in algebraic model) then F is

Ω-approximable (in numerical model).

• OPEN PROBLEM: Explore other transfer theorems

KIAS Zero Workshop July 19-21, 2007

38Transfer Theorem

• Algebraic Pointer Model:
∗ Schönhage’s Pointer Machines, augmented with algebraic operations from Ω

• Numerical Pointer Model:
∗ like the Algebraic Pointer Model,

but replace f ∈ Ω by Rf

• Approximation in the EGC sense
∗ Combinatorially exact, but numerically approximate

• THEOREM:
The following are equivalent:

∗ (I) ValΩ is R-approximable over Ω

∗ (II) For all problems F , if F is Ω-computable (in algebraic model) then F is

Ω-approximable (in numerical model).

• OPEN PROBLEM: Explore other transfer theorems

KIAS Zero Workshop July 19-21, 2007

38Transfer Theorem

• Algebraic Pointer Model:
∗ Schönhage’s Pointer Machines, augmented with algebraic operations from Ω

• Numerical Pointer Model:
∗ like the Algebraic Pointer Model,

but replace f ∈ Ω by Rf

• Approximation in the EGC sense
∗ Combinatorially exact, but numerically approximate

• THEOREM:
The following are equivalent:

∗ (I) ValΩ is R-approximable over Ω

∗ (II) For all problems F , if F is Ω-computable (in algebraic model) then F is

Ω-approximable (in numerical model).

• OPEN PROBLEM: Explore other transfer theorems

KIAS Zero Workshop July 19-21, 2007

39Connection to Analytic School

• THEOREM: Let f : S ⊆ R !R and S regular.
The following are equivalent:

∗ f is computable (in analytic model)

∗ f is partially A-approximable and has a recursively enumerable modulus cover

• Thus, approximability of f gives up precisely one thing: continuity of f

KIAS Zero Workshop July 19-21, 2007

39Connection to Analytic School

• THEOREM: Let f : S ⊆ R !R and S regular.
The following are equivalent:

∗ f is computable (in analytic model)

∗ f is partially A-approximable and has a recursively enumerable modulus cover

• Thus, approximability of f gives up precisely one thing: continuity of f

KIAS Zero Workshop July 19-21, 2007

39Connection to Analytic School

• THEOREM: Let f : S ⊆ R !R and S regular.
The following are equivalent:

∗ f is computable (in analytic model)

∗ f is partially A-approximable and has a recursively enumerable modulus cover

• Thus, approximability of f gives up precisely one thing: continuity of f

KIAS Zero Workshop July 19-21, 2007

40

PART V
CONCLUSION

“Why is αn *= 0? This innocent question will become more and more of
a nuisance until it almost takes over the subject.”

— David Masser (2000)

KIAS Zero Workshop July 19-21, 2007

41Other Zero Problems (This Workshop)

• Functional Zero Problems (Van Der Hoeven)
∗ — in our framework, we may admit variables in Ω

∗ — cf. Constant Zero Problem, Singularity Theory, Canonicity

• Zero Finding (Myunghi, Sharma, Shub, Verschelde)
∗ — viewed as the inverse of Constant Zero Problem

∗ — condition numbers as counter part to zero bounds

• Applications (Choi, Farouki, Wang)
∗ — positive results from TNT!

∗ — approaches to non-robustness in CAD

∗ — theorem proving

• Elementary Problems (Choi, Richardson)
∗ — frontier of solvable Zero Problems

• Theory of Real Computation (Ziegler)
∗ — rich interplay possible between algebraic and analytic views

∗ — complexity of zero problems and real approximation

KIAS Zero Workshop July 19-21, 2007

41Other Zero Problems (This Workshop)

• Functional Zero Problems (Van Der Hoeven)
∗ — in our framework, we may admit variables in Ω

∗ — cf. Constant Zero Problem, Singularity Theory, Canonicity

• Zero Finding (Myunghi, Sharma, Shub, Verschelde)
∗ — viewed as the inverse of Constant Zero Problem

∗ — condition numbers as counter part to zero bounds

• Applications (Choi, Farouki, Wang)
∗ — positive results from TNT!

∗ — approaches to non-robustness in CAD

∗ — theorem proving

• Elementary Problems (Choi, Richardson)
∗ — frontier of solvable Zero Problems

• Theory of Real Computation (Ziegler)
∗ — rich interplay possible between algebraic and analytic views

∗ — complexity of zero problems and real approximation

KIAS Zero Workshop July 19-21, 2007

41Other Zero Problems (This Workshop)

• Functional Zero Problems (Van Der Hoeven)
∗ — in our framework, we may admit variables in Ω

∗ — cf. Constant Zero Problem, Singularity Theory, Canonicity

• Zero Finding (Myunghi, Sharma, Shub, Verschelde)
∗ — viewed as the inverse of Constant Zero Problem

∗ — condition numbers as counter part to zero bounds

• Applications (Choi, Farouki, Wang)
∗ — positive results from TNT!

∗ — approaches to non-robustness in CAD

∗ — theorem proving

• Elementary Problems (Choi, Richardson)
∗ — frontier of solvable Zero Problems

• Theory of Real Computation (Ziegler)
∗ — rich interplay possible between algebraic and analytic views

∗ — complexity of zero problems and real approximation

KIAS Zero Workshop July 19-21, 2007

41Other Zero Problems (This Workshop)

• Functional Zero Problems (Van Der Hoeven)
∗ — in our framework, we may admit variables in Ω

∗ — cf. Constant Zero Problem, Singularity Theory, Canonicity

• Zero Finding (Myunghi, Sharma, Shub, Verschelde)
∗ — viewed as the inverse of Constant Zero Problem

∗ — condition numbers as counter part to zero bounds

• Applications (Choi, Farouki, Wang)
∗ — positive results from TNT!

∗ — approaches to non-robustness in CAD

∗ — theorem proving

• Elementary Problems (Choi, Richardson)
∗ — frontier of solvable Zero Problems

• Theory of Real Computation (Ziegler)
∗ — rich interplay possible between algebraic and analytic views

∗ — complexity of zero problems and real approximation

KIAS Zero Workshop July 19-21, 2007

41Other Zero Problems (This Workshop)

• Functional Zero Problems (Van Der Hoeven)
∗ — in our framework, we may admit variables in Ω

∗ — cf. Constant Zero Problem, Singularity Theory, Canonicity

• Zero Finding (Myunghi, Sharma, Shub, Verschelde)
∗ — viewed as the inverse of Constant Zero Problem

∗ — condition numbers as counter part to zero bounds

• Applications (Choi, Farouki, Wang)
∗ — positive results from TNT!

∗ — approaches to non-robustness in CAD

∗ — theorem proving

• Elementary Problems (Choi, Richardson)
∗ — frontier of solvable Zero Problems

• Theory of Real Computation (Ziegler)
∗ — rich interplay possible between algebraic and analytic views

∗ — complexity of zero problems and real approximation

KIAS Zero Workshop July 19-21, 2007

41Other Zero Problems (This Workshop)

• Functional Zero Problems (Van Der Hoeven)
∗ — in our framework, we may admit variables in Ω

∗ — cf. Constant Zero Problem, Singularity Theory, Canonicity

• Zero Finding (Myunghi, Sharma, Shub, Verschelde)
∗ — viewed as the inverse of Constant Zero Problem

∗ — condition numbers as counter part to zero bounds

• Applications (Choi, Farouki, Wang)
∗ — positive results from TNT!

∗ — approaches to non-robustness in CAD

∗ — theorem proving

• Elementary Problems (Choi, Richardson)
∗ — frontier of solvable Zero Problems

• Theory of Real Computation (Ziegler)
∗ — rich interplay possible between algebraic and analytic views

∗ — complexity of zero problems and real approximation

KIAS Zero Workshop July 19-21, 2007

42

KIAS Zero Workshop July 19-21, 2007

43

END OF TALK

KIAS Zero Workshop July 19-21, 2007

44Thanks for Listening!

“A rapacious monster lurks within every computer,
and it dines exclusively on accurate digits.”

– B.D. McCullough (2000)

• Software and Papers can be downloaded from
http://cs.nyu.edu/exact/

$ Core Library Software

$ “Theory of Real Computation according to EGC”,
Issue from Dagstuhl Workshop on Real Computation, 2006.

$ “Complete Subdivision Algorithms 1: Intersecting Bezier Curves”,
SoCG’06.

$ “Complete Numerical Isolation of Real Zeros in General Triangular
Systems”,

KIAS Zero Workshop July 19-21, 2007

45(with Jin-San Cheng and Xiao-shan Gao, ISSAC’07

KIAS Zero Workshop July 19-21, 2007

46

END OF TALK

KIAS Zero Workshop July 19-21, 2007

47Schönhage’s Pointer Model

•

• ∆-graph G: a labelled digraph
∗ Pointer machine transforms G by re-directing edges

Type Name Instruction Meaning

(i) Node Assignment w ← w′ [w]G′ = [w′]G
(ii) Node Creation w ← new [w]G′ is new

(iii) Node Comparison if w ≡ w′ goto L G′ = G
(iv) Halt and Output HALT(w) Output G|w
(v) Value Comparison if (w ◦ w′) goto L Compare V alG(w) ◦ V alG(w′)

where ◦ ∈ {=, <,≤}
(vi) Value Assignment w := f(w1, . . . , wm) V alG′(w) = f(V alG(w1), . . . , V alG(wn))

where f ∈ Ω and w, wi ∈ ∆∗

KIAS Zero Workshop July 19-21, 2007

47Schönhage’s Pointer Model

•

• ∆-graph G: a labelled digraph
∗ Pointer machine transforms G by re-directing edges

Type Name Instruction Meaning

(i) Node Assignment w ← w′ [w]G′ = [w′]G
(ii) Node Creation w ← new [w]G′ is new

(iii) Node Comparison if w ≡ w′ goto L G′ = G
(iv) Halt and Output HALT(w) Output G|w
(v) Value Comparison if (w ◦ w′) goto L Compare V alG(w) ◦ V alG(w′)

where ◦ ∈ {=, <,≤}
(vi) Value Assignment w := f(w1, . . . , wm) V alG′(w) = f(V alG(w1), . . . , V alG(wn))

where f ∈ Ω and w, wi ∈ ∆∗

KIAS Zero Workshop July 19-21, 2007

