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PART |I.
Is There a Problem with Zero?

“The history of the zero recognition problem is somewhat confused by
the fact that many people do not recognize it as a problem at all.”

— Daniel Richardson (1996)
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What Appears to be the Problem?

Is a number equal to zero?
« Decision Problem — YES/NO answers

Why is any effort needed at all?
* Numbers have canonical names

x E.g., zero, one, two, half, negative ten, square-root two, pi, etc
+ In symbols, 0,1, 2,1, —10, V2, m, ...

Numerical Expressions (non-canonicall!)
* 1 —1+1—1,
x 22+ 5 — 32,
« 1 —> > 27"
« V2+v3—V5+2V6
%

These are all O
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But is it REALLY zero?

Two ways to decide zero:
« (A) Algebraically. E.g., repeated squaring
« (B) Numerically. E.g., by approximation

We are interested in (B):

*

\/§+\F—\/5+2\/6 = 1.4142 +1.7320 — /5 + 2 X 2.4494

= 3.1462 — v/ 9.8989
= 3.1462 — 3.1462

= 0 77
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Apparent Zeros

Folklore:
x (3 - log(640320)/\/163> 7 <1071

R.Graham:
3
(m + /1000025 + /1000031 + /1000084 + /1000087
+ /1000134 + /1000158 + /1000182 + m)
= (m + /1000018 4 /1000042 + v/1000066 + /1000113
+ /1000116 4 /1000169 + /1000175 + \/M)
< 10736
Many more...

Richardson (2005)
« Let F(z) = (1 4+ 2)2 —2(1 +3z/4)2 +1
+ Then F(F(107'%%)) < 10714
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The Zero Problems

() = set of algebraic operators
« Eg., Q={£, X,+}UZ

Let Expr(€2) denote expressions over ()
Evaluation function:
Val : Expr(Q2)-->C

* Say e is invalid if Val(e) =1

Zero problem, ZERO():
x Given e € Expr(£2), is Val(e) =0 7
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Error Notation

NOTATION: z =x £ h

« means |z — x| < h

Absolute Error

*x x is a absolute p-bit approximation of z if x = x += 277

Relative Error
x x is a relative p-bit approximation of x if x = x(1 £ 27 P|x|)

Precision vs. Error

% (1) “precision” is a priori error

* (2) “error” is a posteriori error
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Partial Functions

Partial function, f: S-->T
* Nominal domain: S
«  Proper domain: dom(f) = {w € S : f(w) =]}
« If S = dom(f), then f is total, written f : S — X~

Two cases of interest:
 (Discrete computation) Turing Machines for computing f : S C X" -->3"
* (Continuous computation) Real functions f : S C R-->R

Why have both S and partial f7

x In analysis: we often choose S to be nice
* In algebra: we have no choice about S, and f may be partial (E.g., =)
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Classic (Discrete) Computability Theory
f is partial recursive if there is a Turing machine M :

« (1) For all w € dom( f), M halts with outputs f(w)
* (2) For all w & dom(f), M does not halt

f is recursive if ...
* (1) For all w € dom(f), ...
% (2) For all w € dom(f), M halts in a state g;

Eg., +:Q x Q-->Q a recursive partial (!) function

Rec = Recursive functions:
Prec = Partial Recursive functions
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Classic (Discrete) Computability Theory

Rec C Prec
« There exists a function HALT in Prec \ Rec
«x Every f € Prec is reducible to HALT

What happens to the Halting Problem in the continuous domain?
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Real Approximations

A set IF of base reals is any subset F C R such that
* (1) F is a ring extension of Z

* (2) F is countably dense in R
+ (3) Ring operations, x — x /2 and comparisons of I are efficient

Eg, F=Q o F={n2":n,mecZ}

~

let f:SCR-~R and f:FxZ-F

~

f is an A-approximation of f if:
forall x € F, f(x;p)= f(x)+27P.

x Similarly for R-approximable.
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Let Af denote (an arbitrary member of) the set of all .A-approximations *

of f.

f is A-approxible if some f € A; is computable by a halting Turing
machine
* Similarly for R-approximable and the set R ;.

E.g., the field operations +, X, + and exp, log are all R-approximable.
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Sign Lemma

SIGN LEMMA:
sign(f(z)) = sign(Ry(z;1))

Proof: Ry(z;1) = f(x)(1+£271).

KIAS Zero Workshop

July 19-21, 2007

14



Zero Problem in Real Approximations

Zero(f) is the problem of deciding for x € F, whether f(x)

THEOREM: The following is equivalent:
x f is /R-approximable
x f is A-approximable and Zero( f) is decidable

Proof: (=) Given x and p, we want to compute A¢(z;p).

(=
* (1) compute ¢ = Ry(x; 1)
*x (2) x € Zero(f) iff c = 0 (by SIGN LEMMA)
x (3) If ¢ # 0, OUTPUT Ry(x,p+ 1+ [lg|c|])

Proof: (<) Given x and p, we want to compute R ¢(z;p).
« (1) If f(x) =0, OUTPUT 0

% (2) Find the first n such that |A¢(x;n)| > 2'7"

* (3)

3) So |f(x)| = 27" OUTPUT A¢(x;n + p)
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Separation of Abs and Rel o

THEOREM: There is an A-approximable function that is not R-
approximable.

: 0 if 7-th TM on 0 halts
Flivells e S5 IN = I e 4{0) = 2=F if -th TM on 0 halts in k steps

x H is not R-approximable: otherwise HALT IS recursive.
«x H is A-approximable: on 7, j we can compute H (%; j)
such that |H (i;5) — H(3)| < 277

OPEN PROBLEM: Find a Natural Example

KIAS Zero Workshop July 19-21, 2007



Separation of Abs and Rel &

THEOREM: There is an A-approximable function that is not R-
approximable.

: 0 if 2-th TM on 0 halts
Plioeit Leb bl s IV — I erluerie 110) = 2=F if -th TM on 0 halts in k steps

« H is not R-approximable: otherwise H ALT" is recursive.
« H is A-approximable: on i, j we can compute H (3; j)
such that |H (i;5) — H(i)| < 277

OPEN PROBLEM: Find a Natural Example

KIAS Zero Workshop July 19-21, 2007



Separation of Abs and Rel o

THEOREM: There is an A-approximable function that is not R-
approximable.

: 0 if .-th TM on 0 halts
Firei ReieJ80u N v al(0) = 2=% if i-th TM on 0 halts in k steps

* H is not R-approximable: otherwise H ALT" is recursive.
« H is A-approximable: on i, j we can compute H (; j)
such that |H (i;5) — H(3)| < 277

OPEN PROBLEM: Find a Natural Example

KIAS Zero Workshop July 19-21, 2007



Separation of Abs and Rel o

THEOREM: There is an A-approximable function that is not R-
approximable.

: 0 if 7-th TM on 0 halts
Flivells e S5 IN = I e 4{0) = 2=F if -th TM on 0 halts in k steps

* H is not R-approximable: otherwise H ALT" is recursive.
« H is A-approximable: on i, j we can compute H (i; j)
such that |H (i;5) — H(3)| < 277

OPEN PROBLEM: Find a Natural Example

KIAS Zero Workshop July 19-21, 2007



17

Complexity of Zero Problems

Useful complexity classification

Zero Hierarchy

% Polynomial: Qg :={+, —, X} UZ
Rational: Q1:=QqU {+}
Radical: Q:=Q, U{¥-: k > 2}
Algebraic: €23:= Qs U {RootOf}
Elementary: 24, = Q3 U {exp, log}

CSIE

Complexity
*x ZERO(€21) isin PSPACE and P-complete [Mehlhorn-Schmitt-Yap]
* ZERO(S23) is decidable in Single Exponential Time [Tarski,Grigoriev,etc]
*  ZERO(£24) is decidable provided Schanuel’s conjecture holds [Richardson]

OPEN PROBLEM: Is ZERO(f),) decidable?
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PART II.
Why Care About Nothing (Zero)?

Much Ado About Nothing
— Shakespeare (1600)
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Points and Lines

Simple geometric test:
* Is a point P on a line L7

PisonL << axg+byy+c=0
x L: aX4+bY +c=0
* P (x()ay())

In Meshing Applications
* Point Classification Problem: Is P IN/OUT/ON a given triangle?
x Sign determination

Upshot

* Knowing zero (and sign) is necessary for computing correct geometry

KIAS Zero Workshop

July 19-21, 2007
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Again, What is Geometry?

Geometric vein permeates all of Mathematics
« Number theory, algebraic & differential geometry, topology, probability, ...

What is Geometry?
x Euclid: Axiomatic Approach
Descartes: Algebraization of Geometry
Klein: Transformation Groups

*
*

x Hilbert: Logical Foundations

x Tarski: Elementary Geometry and Algebra
*

Erdos: Combinatorial Vein

Computational Perspective:

* (1) Geometry is comprised of discrete relations among geometric objects

* (2) Computational Geometry computes these relations, by deciding zero & sign
of expressions

Exact Geometric Computation (EGC):
— an approach requiring error-free zero & sign computation
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Robust Geometric Computation

Widespread numerical nonrobustness issues in computational science and
engineering

« Computer Science's dirty secret...

Geometric Computation is inherently discontinuous

Upshot: if we can efficiently solve the zero problem
* ... then we can produce robust software
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Other Applications of Zero Problems

Surface-Surface Intersection (SSI) (Farouki)
« “The single greatest cause of poor reliability of CAD systems is lack of topologically

consistent surface intersection algorithms”.
« — consensus, Workshop on Math. Foundations of CAD, MSRI, Berkeley (1999)

Computer-Aided Theorem Proving
* E.g., Kepler's conjecture (T. Hale)

Automated Theorem Proving (D.M.Wang)
x Randomized Testing, Proving by Example, etc

Table Maker's Dilemma (J-M.Muller)
Test Suites for Statistical Software (B.D.McCullough)

Guaranteed Precision Arithmetic software
x E.g., Core Library, LEDA
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PART III.
On Zero Bounds and Adaptivity

“It can be of no practical use to know that m is irrational, but if we can
know, it surely would be intolerable not to know.”

— E.C. Titchmarsh
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The Numerical Halting Problem
To decide if e = 0, we compute approximations

* €1, €2,€3, ...

* wheree = ¢, £ 27"
OUTPUT “e # 0" when |e,| > 27"
What if e = 07

The ZERO PROBLEM is the continuous analogue of
the HALTING problem
x — like the halting problem, ZERO is “semi-decidable”

The HALTING problem is complete for Prec
We will show the continuous analogue.
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Two Ways to to Use Zero Bounds

Suppose we have B(e) > 0 such that:
« if Val(e) # 0, then |Val(e)| > B(e)
« B is a (conditional) zero bound function

METHOD 1: Compute approximation e for e so that |e — e| < B(e)/2
x If [e|] > B(e), then OUTPUT “e # 0"
* Otherwise, OUTPUT “e = 0"

METHOD 2: Compute sequence (e1,es,€e3,...) as before
« If |en| > 27", OUTPUT “e # 0"
x If 27" < Bl OQUTPUT “e = 0"

Semi-adaptivity of METHOD 2
* if x # y , the complexity depends on — log, |x — y|
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Why Adaptivity Algorithms !

Adaptive Complexity
(1) The numerical method (B) is adaptive...
* (2) Algebraic methods are inherently non-adaptive, too inefficient
* (3) Only algebraic information: Zero Bounds

Other advantages:
x simpler algorithms
x exploits geometry
x algorithms are independent of bounds

General trend in computer algebra
* (1) PROBLEM: most adaptive algorithms are incomplete

* (2) E.g., no known adaptive complete algorithm for topological analysis of curve
* (3) ONE SOLUTION: Hybrid algorithms

OPEN PROBLEM:
Construct Complete and Fully Adaptive Algorithms for basic problems
x E.g., topological analysis of curves

KIAS Zero Workshop July 19-21, 2007
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x algorithms are independent of bounds

General trend in computer algebra
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Where do we get Zero Bounds?

Classical Root Bounds

+ Constructive Root Bounds

BFMS Bound

_ 1
* Ble) = L(e)U(e)P(e)?~1

e Ule) L(e)
1. | rational a/b a b
2. €1 :|: €9 U(el)L(eg) —|— L(el)U(eg) L(el)L(eg)
3. e1 X ey U(er)U(e2) L(e1)L(e2)
4. €1 +— €2 U(el)L(eg) L(el)U(eg)
5. Vel Y/ U(er) v/ L(e1)

Other Constructive Bounds:
BFMSS, Mahler Measure, Li-Yap, k-ary, etc
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The Central Algorithm

Guaranteed precision computation
« Viewed as a generalization of EGC

Basic idea:
Each Operator f € €2 is computed by R ¢
* Precision (a priori error) is driven down
« Approximation (4 a posteriori error) is propagated up
* R ¢ is applied to approximations, and propagated up (unless)

” Precision in x | Precision in y | Operation Precision

z=x Xy p+2 p+2 00

z=axy || p+2+pT(v) p+1+pu"(v) 0

z=ux/y p+2—p (y) max{1l — pu" (y), p+1
p+2—2p" (y) +2uT (@)} | p+1

z =z max{p+ 1,1 — pu (x)/2 p+1

z=expzx max{l,p+2—}—2“+(x)+1} p+1

z = logx max{l —pu (x),p+2—u (x)} p+1
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Cast of Characters

Three Muskeeters and a friend:
« (A) a(e; p) — absolute approximation

+ (M) p"(e) — upper bound on p(e) = lg |Val(e)|

« (S) sign(e) — sign of Val(e)

« (B) B(e) — root bound function

OPEN PROBLEM: What is the optimal algorithm for evaluation?
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Transcendental Number Theory

Another conditional zero bound:
B(e) =1
« (Fundamental Theorem of TNT)

How do you prove that 8 =7 (2/3)%" is irrational?

Outline of TNT (D.Masser)

* (AP) Construction of Auxilliary Polynomial
* (UB) Obtaining an upper bound

% (LB) Obtaining a lower bound

* (NV) Proving non-vanishing

Let 0, = 22:0(2/3)2717 Ry, =0 — bn
+ (AP) Let P(X,Y) =2XY?*+4XY —3Y* 4+ X - Y
« (UB) |am| < (1/10)2"" where |P((2/3)*" ", R,)| < (1/10)
x* (LB)If 8 =r/sand a, # 0, then |P((2/3)2n+1,Rn)| > 57%(1/9)
* (NV) a, #0

2n+1

2n—|—1

From irrationality /transcendence to transcendence measures
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PART IV
On Foundations of Real Computation

“There is a substantial conflict between theoretical computer science and
numertcal analysis. ... The conflict has at its roots another age-old
conflict, that between the continuous and the discrete. ”

— Blum, Cucker, Shub, Smale (1996, Manifesto)
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Two Approaches to Real Computation

Analytic Approach
«  Turing(1936), Grzegorczyk(1955), Weihrauch, Ko, etc
« Real numbers represented by rapidly converging Cauchy sequences
« Extend Turing machines to compute with infinite input/output sequences

Algebraic Approach

% Blum-Shub-Smale (BSS) model, Real RAMs

* Real numbers directly represented as atomic objects
* Real numbers are compared without error
*

Algebraic operators are carried out without error
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Where is the Zero Problem?

Zero Problem is
+ undecidable in Analytic Approach
+ trivial in Algebraic Approach
* more nuanced in our Approximation Approach

Other Issues
* (Analytic) Only continuous functions are computable (no geometry!)
« (Algebraic) Exponential function is not computable

* (Approximation) Composition is not automatic

THEOREM: There exists R-approximable f, g such that their composition
f o g is not A-approximable
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How We Solve Numerical Problems

E.g., Solving a PDE model, A numerical optimization, etc

STEP A:

x Design an ideal Algorithm A
« Assume certain operations such as £, X, exp()
x Show that problem is solvable by Algorithm A

STEP B:

* Implement Algorithm A as a Numerical Program B
* Account for numerical representation, errors, convergence, etc

x Specify the “correctness” criteria

KIAS Zero Workshop

July 19-21, 2007
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A New Synthesis
Step A:

« Algorithm A belongs to an Algebraic Model (e.g., BSS Model)
« Basis Q = {#£, X, exp(), ...}

Step B:

* Program B belongs to some numerical model (Turing or Pointer Model)

Critical Question:
x Can Algorithm A be implemented by some Program B?

Validity:
Even numerical analysis books proceed to Step B via Step A

The algebraic and numerical models play complementary roles!
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Transfer Theorem

Algebraic Pointer Model:

« Schonhage's Pointer Machines, augmented with algebraic operations from (2

Numerical Pointer Model:
x like the Algebraic Pointer Model,

but replace f € Q2 by Ry

Approximation in the EGC sense
x Combinatorially exact, but numerically approximate

THEOREM:
The following are equivalent:
* (1) Valq is R-approximable over €2
x (II) For all problems F', if F'is 2-computable (in algebraic model) then F' is

(-approximable (in numerical model).

OPEN PROBLEM: Explore other transfer theorems
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Connection to Analytic School

THEOREM: Let f: S C R--~R and S regular.
The following are equivalent:
« f is computable (in analytic model)
« f is partially A-approximable and has a recursively enumerable modulus cover

Thus, approximability of f gives up precisely one thing: continuity of f
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PART V
CONCLUSION

“Why 1s o, # 07 This innocent question will become more and more of
a nutsance until it almost takes over the subject.”

— David Masser (2000)
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Other Zero Problems (This Workshop)

Functional Zero Problems (Van Der Hoeven)
s« — in our framework, we may admit variables in 2

« — cf. Constant Zero Problem, Singularity Theory, Canonicity

Zero Finding (Myunghi, Sharma, Shub, Verschelde)

* — viewed as the inverse of Constant Zero Problem

x — condition numbers as counter part to zero bounds

Applications (Choi, Farouki, Wang)
x — positive results from TNT!
*x — approaches to non-robustness in CAD

x — theorem proving

Elementary Problems (Choi, Richardson)

* — frontier of solvable Zero Problems

Theory of Real Computation (Ziegler)
x — rich interplay possible between algebraic and analytic views

x — complexity of zero problems and real approximation
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Thanks for Listening]!

“A rapacious monster lurks within every computer,
and it dines exclusively on accurate digits.”

— B.D. McCullough (2000)

Software and Papers can be downloaded from
http://cs.nyu.edu/exact/

* Core Library Software

* “Theory of Real Computation according to EGC",
Issue from Dagstuhl Workshop on Real Computation, 2006.

* “Complete Subdivision Algorithms 1: Intersecting Bezier Curves”,

SoCG'06.

* “Complete Numerical Isolation of Real Zeros in General Triangular
Systems”,
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(with Jin-San Cheng and Xiao-shan Gao, ISSAC'07
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Schonhage’s Pointer Model

A-graph G: a labelled digraph

+ Pointer machine transforms G by re-directing edges

| Type || Name | Instruction Meaning

(i) Node Assignment w— w' (W] = [w’]G

(ii) Node Creation w «— new [w] 7 is new

(iii) Node Comparison if w = w’ goto L G =a

(iv) Halt and Output HALT (w) Output G|w

(v) Value Comparison if (wo w’) goto L Compare Val(w) o ValG(w/)
where 0 € {=, <, <}

D) Value Assignment w:= f(wy,...,wm) ValG/(w) = f(Valg(wy), ..., Valg(wn))
where f € Q and w,w; € A*
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