Applications of Transcendental Zero Bounds to Geometric Computation

Sung Woo Choi

swchoi@duksung.ac.kr

Department of Mathematics

Duksung Women's University, Seoul, Korea

Zero2007, July 19-21, Korea Institute for Advanced Study

 $P_0(-3,3)_{\bullet}$

 $\bullet P_1(3,2)$

Determine *exactly* which path is shorter.

Determine *exactly* which path is shorter.

$$\begin{array}{rcl} \overline{\text{path 1}} &=& \overline{P_0 P_2} + \overline{P_2 P_1} = \sqrt{(-3-0)^2 + (3-4)^2} + \sqrt{(0-3)^2 + (4-2)^2} \\ &=& \sqrt{10} + \sqrt{13} \\ \hline \overline{\text{path 2}} &=& \overline{P_0 P_3} + \overline{P_3 P_1} = \sqrt{(-3-(-1))^2 + (3-1)^2} + \sqrt{(-1-3)^2 + (1-2)^2} \\ &=& \sqrt{8} + \sqrt{17} \end{array}$$

Determine the sign of: $\overline{\text{path 1}} - \overline{\text{path 2}} = \sqrt{10} + \sqrt{13} - \sqrt{8} - \sqrt{17}$

Determine *exactly* which path is shorter.

$$\overline{\text{path 1}} = \overline{P_0 P_2} + \overline{P_2 P_1} = \sqrt{(-3-0)^2 + (3-4)^2} + \sqrt{(0-3)^2 + (4-2)^2}$$

$$= \sqrt{10} + \sqrt{13}$$

$$\overline{\text{path 2}} = \overline{P_0 P_3} + \overline{P_3 P_1} = \sqrt{(-3-(-1))^2 + (3-1)^2} + \sqrt{(-1-3)^2 + (1-2)^2}$$

$$= \sqrt{8} + \sqrt{17}$$

Determine the sign of: $\overline{path 1} - \overline{path 2} = \sqrt{10} + \sqrt{13} - \sqrt{8} - \sqrt{17} = -0.183704...$

 $\sqrt{2} + \sqrt{5 - 2\sqrt{6}}$?? $\sqrt{3}$

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}} ?? \sqrt{3} \implies \sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$$

 $\sqrt{3} = 1.732050808...$

 $\sqrt{2} + \sqrt{5 - 2\sqrt{6}} ?? \sqrt{3} \Rightarrow \sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$ $\sqrt{3} = 1.732050808...$

 $\frac{\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811}}{\sqrt{514229} + \sqrt{832040}}$

 $\sqrt{2} + \sqrt{5 - 2\sqrt{6}} ?? \sqrt{3} \Rightarrow \sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$ $\sqrt{3} = 1.732050808...$

 $\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811} = 1629.259889...$ $\sqrt{514229} + \sqrt{832040} = 1629.259889...$

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}} ?? \sqrt{3} \Rightarrow \sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$$

 $\sqrt{3} = 1.732050808...$

 $\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811} = 1629.259888633142299848838800 \dots$ $\sqrt{514229} + \sqrt{832040} = 1629.259888630189238404283301 \dots$

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}} ?? \sqrt{3} \Rightarrow \sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$$

 $\sqrt{3} = 1.732050808...$

$$\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811} = 1629.259888633142299848838800 \dots$$

$$\sqrt{514229} + \sqrt{832040} = 1629.259888630189238404283301 \dots$$

[Scheinerman, Amer. Math. Monthly, 2000]

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}} ?? \sqrt{3} \Rightarrow \sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$$

 $\sqrt{3} = 1.732050808...$

 $\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811} = 1629.259888633142299848838800 \dots$ $\sqrt{514229} + \sqrt{832040} = 1629.259888630189238404283301 \dots$

[Scheinerman, Amer. Math. Monthly, 2000]

Nonzero case:

- Within machine precision \rightarrow Can determine the sign.
- **Less** than machine precision \rightarrow Go arbitrary precision computation.
- **D** Zero case: Cannot determine in this way? \rightarrow Zero bounds

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}} ?? \sqrt{3} \Rightarrow \sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$$

 $\sqrt{3} = 1.732050808...$

 $\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811} = 1629.259888633142299848838800...$ $\sqrt{514229} + \sqrt{832040} = 1629.259888630189238404283301...$

[Scheinerman, Amer. Math. Monthly, 2000]

Nonzero case:

- Within machine precision \rightarrow Can determine the sign.
- **Less** than machine precision \rightarrow Go arbitrary precision computation.
- **D** Zero case: Cannot determine in this way? \rightarrow Zero bounds
- \rightarrow Zero problem becomes important!

Given a numerical expression, determine exactly whether it is zero or not.

Central to exact qualitative decision.

- Given a numerical expression, determine exactly whether it is zero or not.
- Central to exact qualitative decision.
- Can we really determine exactly whether a given expression is zero or not?
 - Symbolic approach: successive squaring, etc.
 - always gives an exact answer (for algebraic expressions).
 - hard for general transcendental expressions.
 - uniformly slow.
 - Numerical approach: approximation
 - **fast** for most of the input. \rightarrow adaptive
 - prone to error. (floating point vs. arbitrary precision)
 - **I** no guarantee? \leftarrow root bounds

- Given a numerical expression, determine exactly whether it is zero or not.
- Central to exact qualitative decision.
- Can we really determine exactly whether a given expression is zero or not?
 - Symbolic approach: successive squaring, etc.
 - always gives an exact answer (for algebraic expressions).
 - hard for general transcendental expressions.
 - uniformly slow.
 - Numerical approach: approximation
 - **fast** for most of the input. \rightarrow adaptive
 - prone to error. (floating point vs. arbitrary precision)
 - **•** no guarantee? \leftarrow root bounds
 - \longrightarrow We adopt numerical approach!

- Given a numerical expression, determine exactly whether it is zero or not.
- Central to exact qualitative decision.
- Can we really determine exactly whether a given expression is zero or not?
 - Symbolic approach: successive squaring, etc.
 - always gives an exact answer (for algebraic expressions).
 - hard for general transcendental expressions.
 - uniformly slow.
 - Numerical approach: approximation
 - **fast** for most of the input. \rightarrow adaptive
 - prone to error. (floating point vs. arbitrary precision)
 - **•** no guarantee? \leftarrow root bounds
 - \longrightarrow We adopt numerical approach!
- Trivial with Real RAM model not realistic
- We need decidability with TM!

a Polynomial Away From Zero

Example: $x = \sqrt{2} + \sqrt{5 - 2\sqrt{6}} - \sqrt{3}$.

 $\to x^4(x^4 - 40x^2 + 16) = 0$

Suppose $x \neq 0$. Then $x^4 - 40x^2 + 16 = 0$.

$$\rightarrow \left(\frac{1}{x}\right)^4 - \frac{5}{2}\left(\frac{1}{x}\right)^2 + \frac{1}{16} = 0.$$

 \rightarrow Cauchy's bound: $\left|\frac{1}{x}\right| < 1 + \max\left\{\left|1\right|, \left|-\frac{5}{2}\right|, \left|\frac{1}{16}\right|\right\} = \frac{7}{2}.$ $\rightarrow |x| > \frac{2}{7}.$

But x = 0.0..., a contradiction. $\rightarrow x = 0$.

a Polynomial Away From Zero

Example:
$$x = \sqrt{2} + \sqrt{5 - 2\sqrt{6}} - \sqrt{3}$$
.

 $\to x^4(x^4 - 40x^2 + 16) = 0$

Suppose $x \neq 0$. Then $x^4 - 40x^2 + 16 = 0$.

$$\rightarrow \left(\frac{1}{x}\right)^4 - \frac{5}{2}\left(\frac{1}{x}\right)^2 + \frac{1}{16} = 0.$$

 \rightarrow Cauchy's bound: $\left|\frac{1}{x}\right| < 1 + \max\left\{\left|1\right|, \left|-\frac{5}{2}\right|, \left|\frac{1}{16}\right|\right\} = \frac{7}{2}$. $\rightarrow |x| > \frac{2}{7}$.

But x = 0.0..., a contradiction. $\rightarrow x = 0$.

Classical bounds: Inefficient and Ineffective!

 \rightarrow Constructive Root Bounds

Constructive Root Bound

- Some modern bounds: Degree-Measure [Mignotte (1982)], Degree-Height & Degree-Length [Yap-Dubé (1994)], BFMS [Burnikel et al (1989)], Eigenvalue [Scheinerman (2000)], Conjugate [Li-Yap (2001)], BFMSS [Burnikel et al (2001)], k-ary [Pion-Yap (2002)]
- For each step of operations $\{\pm, \times, /, \sqrt[k]{}\}$, can determine the resulting sufficient precision bit for the zero test in terms of those of the arguments.
- Key to Exact Geometric Computation (EGC).
- No general bound for transcendental expressions!

Algebraic Numbers and Expressions

Def: $\alpha \in \mathbb{C}$ is *algebraic*, if $p(\alpha) = 0$ for some nontrivial $p \in \mathbb{Z}[x]$.

- Solution Natural numbers, rational numbers, $\sqrt{2}$, i, ...
- **Closed** under \pm , \times , \div , RootOf()
- countable

Algebraic Numbers and Expressions

Def: $\alpha \in \mathbb{C}$ is *algebraic*, if $p(\alpha) = 0$ for some nontrivial $p \in \mathbb{Z}[x]$.

- Natural numbers, rational numbers, $\sqrt{2}$, i, ...
- **Closed** under \pm , \times , \div , RootOf()
- countable

Algebraic Expressions:

- Start with \mathbb{N} , and successively apply operations $\{\pm, \times, \div, \text{RootOf}()\}$. (e.g., $\sqrt{2} + \sqrt{5 2\sqrt{6}} \sqrt{3}$)
- Values are algebraic numbers if well-defined. (closedness)
- Every algebraic number can be represented by an algebraic expression.

Algebraic Numbers and Expressions

Def: $\alpha \in \mathbb{C}$ is *algebraic*, if $p(\alpha) = 0$ for some nontrivial $p \in \mathbb{Z}[x]$.

- Natural numbers, rational numbers, $\sqrt{2}$, i, ...
- **Closed** under \pm , \times , \div , RootOf()
- countable

Algebraic Expressions:

- Start with \mathbb{N} , and successively apply operations $\{\pm, \times, \div, \text{RootOf}()\}$. (e.g., $\sqrt{2} + \sqrt{5 2\sqrt{6}} \sqrt{3}$)
- Values are algebraic numbers if well-defined. (closedness)
- Every algebraic number can be represented by an algebraic expression.

Def: $\alpha \in \mathbb{C}$ is *transcendental*, if α is not algebraic.

- \bullet e, π, \ldots
- most of the numbers are transcendental (uncountable)
- transcendental expressions: exp(1 cos 5) (cf., exp(log 3))

Algebraic Problems

Inputs are algebraic. (often \mathbb{Z} or \mathbb{Q})

Involves zero problems for algebraic expressions only.
 Ex. relative configuration of line & circle:
 Given a line *l* : *ax* + *by* + *c* = 0 and a circle *C* : (*x* − *d*)² + (*y* − *e*)² = *r*² with rational inputs *a*, *b*, *c*, *d*, *e*, *r*, determine the relation between them.
 → Determine the sign of the discriminant *D*, which is *algebraic*.

- Most of the known problems in discrete algorithm.
- Decidable in TM-sense.

- Input: algebraic
- Involves a zero problem for transcendental expression.
- Currently no general solution in EGC sense. (a challenge in EGC)
- Only a few examples which is TM decidable.

- Input: algebraic
- Involves a zero problem for transcendental expression.
- Currently no general solution in EGC sense. (a challenge in EGC)
- Only a few examples which is TM decidable.

- Input: algebraic
- Involves a zero problem for transcendental expression.
- Currently no general solution in EGC sense. (a challenge in EGC)
- Only a few examples which is TM decidable.

- Input: algebraic
- Involves a zero problem for transcendental expression.
- Currently no general solution in EGC sense. (a challenge in EGC)
- Only a few examples which is TM decidable.

- Input: algebraic
- Involves a zero problem for transcendental expression.
- Currently no general solution in EGC sense. (a challenge in EGC)
- Only a few examples which is TM decidable.

- Input: algebraic
- Involves a zero problem for transcendental expression.
- Currently no general solution in EGC sense. (a challenge in EGC)
- Only a few examples which is TM decidable.

- Input: algebraic
- Involves a zero problem for transcendental expression.
- Currently no general solution in EGC sense. (a challenge in EGC)
- Only a few examples which is TM decidable.

- Assume: each coord. of P, Q, centers of C_i , radii of C_i are all algebraic.
- Seemingly a typical problem in computational geometry *feasible paths*.
- The first nontrivial example of a transcendental problem which turned out to be TM decidable. [Chang et al, Int. J. Comp. Geom. Appl. 2006]

Overall Approach

Find Feasible Paths: $\mu = \mu_1; \mu_2; \cdots; \mu_k$

- Alternating between line segments and circular arcs
- Boundary points are *algebraic*.
- Sum up the lengths of $\begin{cases} \text{ line segments: } & \sqrt{(\cdot \cdot)^2 + (\cdot \cdot)^2} \\ \text{ circular arcs: } & r \cdot \theta \end{cases}$
- Apply Dijkstra's Algorithm:
 - Compute a combinatorial (weighted) graph G = (V, E), where vertices V: discs & edges E: joining two discs.
 - $O(n^2 \log n)$, where n: # discs

Length of Feasible Path

- $\sum \alpha_j: \text{ length of line segments} \Rightarrow \alpha_j = \overline{P_0 P_1} \text{ algebraic}$
- $\sum r_k \theta_k :$ length of circular arcs

Length of Feasible Path

$$\sum \alpha_j: \text{ length of line segments} \Rightarrow \alpha_j = \overline{P_0 P_1} \text{ algebraic}$$

 $\sum r_k \theta_k :$ length of circular arcs

Comparison of Two Feasible Paths:

 $d(\mu_1) - d(\mu_2) \rightarrow \alpha + r_1 \theta_1 + \dots + r_n \theta_n$ α, r_i : algebraic, θ_i : transcendental

Decidability

We have to solve the zero problem for:

$$\Lambda = \alpha + r_1 \theta_1 + \dots + r_n \theta_n$$

= $\alpha - ir_1 \log e^{i\theta_1} - \dots - ir_n \log e^{i\theta_n}$
= $\alpha + (-ir_1) \log \left(\cos \theta_1 \pm i \sqrt{1 - \cos^2 \theta_1} \right) + \dots + (-ir_1) \log \left(\cos \theta_1 \pm i \sqrt{1 - \cos^2 \theta_1} \right)$

 \rightarrow "Linear forms in logarithms!" : known to be transcendental unless it is zero.

Decidability

We have to solve the zero problem for:

$$\overline{\Lambda} = \alpha + r_1 \theta_1 + \dots + r_n \theta_n$$

= $\alpha - ir_1 \log e^{i\theta_1} - \dots - ir_n \log e^{i\theta_n}$
= $\left[\alpha + (-ir_1) \log \left(\cos \theta_1 \pm i \sqrt{1 - \cos^2 \theta_1} \right) + \dots + (-ir_1) \log \left(\cos \theta_1 \pm i \sqrt{1 - \cos^2 \theta_1} \right) \right]$

 \rightarrow "Linear forms in logarithms!" : known to be transcendental unless it is zero.

Baker's Theorem Let $\alpha_0, \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n$ be nonzero algebraic numbers, with their degrees $\leq d$ and heights $\leq H$. let

 $\Lambda = \alpha_0 + \alpha_1 \log \beta_1 + \cdots + \alpha_n \log \beta_n$ (linear forms in logarithms).

If $\Lambda \neq 0$, then \exists constant C = C(n, d, H) s.t. $|\Lambda| > 2^{-C}$.

Decidability

We have to solve the zero problem for:

$$\Lambda = \alpha + r_1 \theta_1 + \dots + r_n \theta_n$$

= $\alpha - ir_1 \log e^{i\theta_1} - \dots - ir_n \log e^{i\theta_n}$
= $\left[\alpha + (-ir_1) \log \left(\cos \theta_1 \pm i \sqrt{1 - \cos^2 \theta_1} \right) + \dots + (-ir_1) \log \left(\cos \theta_1 \pm i \sqrt{1 - \cos^2 \theta_1} \right) \right]$

 \rightarrow "Linear forms in logarithms!" : known to be transcendental unless it is zero.

Baker's Theorem Let $\alpha_0, \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n$ be nonzero algebraic numbers, with their degrees $\leq d$ and heights $\leq H$. let

 $\Lambda = \alpha_0 + \alpha_1 \log \beta_1 + \cdots + \alpha_n \log \beta_n$ (linear forms in logarithms).

If $\Lambda \neq 0$, then \exists constant C = C(n, d, H) s.t. $|\Lambda| > 2^{-C}$.

- So the problem is *transcendental* but *decidable*!
- How many bits are needed to solve the zero problem?

Some Definitions

- $\alpha \in \mathbb{C}$: algebraic & $p(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$: its minimal polynomial

 - **Degree**: $deg(\alpha) := deg(p) = n$

 - Solute logarithmic height: $h(\alpha) := \frac{1}{\deg(\alpha)} \log M(\alpha)$
 - *Mahler measure*: $M(\alpha) := |a_n| \prod_{i=1}^n \max\{1, |\alpha_i|\}$, where $\alpha_1, \dots, \alpha_n$ are all the conjugates of α .

Some Definitions

 $\alpha \in \mathbb{C}$: algebraic & $p(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$: its minimal polynomial

- **Degree**: $deg(\alpha) := deg(p) = n$
- Absolute logarithmic height: $h(\alpha) := \frac{1}{\deg(\alpha)} \log M(\alpha)$
- Mahler measure: $M(\alpha) := |a_n| \prod_{i=1}^n \max\{1, |\alpha_i|\}$, where $\alpha_1, \dots, \alpha_n$ are all the conjugates of *α*.

Example: $\alpha = p/q$, $(p, q \in \mathbb{Z} \text{ are relatively prime.})$

$$\begin{array}{ll} \mbox{minimal poly.} &= qx - p, & \mbox{deg}(\alpha) = 1, \\ \mbox{conjugates} &= p/q, & \mbox{} H(\alpha) = \max\{|p|, |q|\}, \\ M(\alpha) = |q| \max\{1, |p/q|\} = \max\{|p|, |q|\}, & \mbox{} h(\alpha) = \max\{\log |p|, \log |q|\} \end{array}$$

Transcendental Number Theory

Theorem. (Waldschmidt) For $n \ge 2$, let $\gamma_0, \gamma_1, \dots, \gamma_n$ be algebraic numbers, and let β_1, \dots, β_n be nonzero algebraic numbers. If

$$\Lambda := \gamma_0 + \gamma_1 \log \beta_1 + \dots + \gamma_n \log \beta_n \neq 0,$$

then

$$|\Lambda| > \exp\{-2^{8n+51}n^{2n}D^{n+2}V_1 \cdots V_n(W + \log(EDV_n^+))(\log(EDV_{n-1}^+))(\log E)^{-n-1}\},\$$

where

$$D \ge [\mathbb{Q}(\gamma_0, \gamma_1, \cdots, \gamma_n, \beta_1, \cdots, \beta_n) : \mathbb{Q}], \qquad W \ge \max_{0 \le j \le n} \{h(\gamma_j)\},$$
$$V_j \ge \max\{h(\beta_j), |\log \beta_j| / D, 1 / D\}, \qquad V_1 \le \cdots \le V_n,$$
$$V_{n-1}^+ = \max\{V_{n-1}, 1\}, \qquad V_n^+ = \max\{V_n, 1\}.$$
$$1 < E \le \min\{e^{DV_1}, \min_{1 \le j \le n} \{4DV_j / |\log \beta_j|\}\}.$$

- Assume the input is *L*-bit rational numbers (P/Q, where P, Q are *L*-bit integers. ($|P|, |Q| < 2^L$)), and N is the number of discs.
- Detailed estimation gives: $|\overline{\Lambda}| > \exp\left[-2^{O(N^2 + N \log L)}\right]$.
- The number of bits we need to expand to compare the lengths of two feasible paths is $2^{O(N^2 + N \log L)}$.

Collision Detection Involving Helical Motion

Given a helical motion $h(t) = (\cos t, \sin t, s \cdot t)$ of a point p and an algebraic motion $c(t) = (c_1(t), c_2(t), c_3(t))$ of a ball \mathcal{B} with radius r, determine exactly whether they will collide.

Collision Detection Involving Helical Motion

Given a helical motion h(t) = $(\cos t, \sin t, s \cdot t)$ of a point p and an algebraic motion $c(t) = (c_1(t), c_2(t), c_3(t))$ of a ball \mathcal{B} with radius r, determine exactly whether they will collide.

Assume algebraic input: s, r, c_i algebraic

- $c_i(t)$ algebraic, if $\exists P(x, y) \in \mathbb{Z}[x, y] \ s.t. \ P(c_i(t), t) \equiv 0$
- Natural question (e.g. in CAD)
- If both motions are algebraic \rightarrow becomes an algebraic problem.

Collision Detection Involving Helical Motion

Given a helical motion h(t) = $(\cos t, \sin t, s \cdot t)$ of a point p and an algebraic motion $c(t) = (c_1(t), c_2(t), c_3(t))$ of a ball \mathcal{B} with radius r, determine exactly whether they will collide.

- Solution Assume algebraic input: s, r, c_i algebraic
 - $c_i(t)$ algebraic, if $\exists P(x, y) \in \mathbb{Z}[x, y] \ s.t. \ P(c_i(t), t) \equiv 0$
- Natural question (e.g. in CAD)
- If both motions are algebraic \rightarrow becomes an algebraic problem.
- Turns out to be another (the second) nontrivial transcendental problem which is decidable with TM. [Choi et al, Real Numbers and Computers 7, 2006]

How?

$$?\exists t, ||h(t) - c(t)|| \le r$$

Natural assumption: no collision initially

$$\Leftrightarrow ?\exists t, r^2 = ||h(t) - c(t)||^2$$

= $-2c_1(t)\cos t - 2c_2(t)\sin t + \{c_1(t)^2 + c_2(t)^2 + (st - c_3(t))^2 + 1\}$

 $\Leftrightarrow ?\exists t, \ a(t)\cos t + b(t)\sin t + d(t) = 0,$

where $a(t) = -2c_1(t)$, $b(t) = -2c_2(t)$, $d(t) = c_1(t)^2 + c_2(t)^2 + (st - c_3(t))^2 + 1 - r^2$.

$$\Leftrightarrow \begin{cases} ?\exists t, \ a(t) = b(t) = d(t) = 0 \quad \rightarrow \text{ algebraic problem} \\ \text{or }?\exists t, \ \alpha(t) \cos t + \beta(t) \cos t = \delta(t), \\ \text{where } \alpha(t) = \frac{a(t)}{\sqrt{a(t)^2 + b(t)^2}}, \beta(t) = \frac{b(t)}{\sqrt{a(t)^2 + b(t)^2}}, \delta(t) = -\frac{d(t)}{a(t)^2 + b(t)^2} \\ \sim ?\exists t, \ \cos\left(t \pm \arccos(\alpha(t))\right) = \delta(t) \\ \Leftrightarrow ?\exists t, \ t \pm \arccos(\alpha(t)) \pm \arccos(\delta(t)) = 0 \mod 2\pi \end{cases}$$

 \Leftrightarrow ? $\exists t, t \pm \arccos(\alpha(t)) \pm \arccos(\delta(t)) + 2k\pi = 0$, (k: between zeros of $\delta(t) \pm 1$)

Linear Form in Logarithms Again

 $F(t) := t \pm \arccos(\alpha(t)) \pm \arccos(\delta(t)) + 2k\pi$

 \rightarrow Determine (exactly) the signs of all extremal points of *F*. An extremal point t_* satisfy:

$$F'(t_*) = 1 \pm \frac{\alpha'(t_*)}{\sqrt{1 - \alpha(t_*)^2}} \pm \frac{\delta'(t_*)}{\sqrt{1 - \delta(t_*)^2}} = 0$$

or $\alpha(t_*) \pm 1 = 0$
or $\delta(t_*) \pm 1 = 0$

 $\rightarrow t_*$ is algebraic.

 \rightarrow Determine the sign of:

$$F(t_*) = t_* \pm \arccos(\alpha(t_*)) \pm \arccos(\delta(t_*)) + 2k \arccos(-1)$$
$$= \left[t_* \pm i \log \left\{ \alpha(t_*) \pm i \sqrt{1 - \alpha(t_*)} \right\} \pm i \log \left\{ \delta(t_*) \pm i \sqrt{1 - \delta(t_*)} \right\} \pm 2ki \log(-1) \right]$$

 \rightarrow Linear forms in logarithms! \rightarrow Decidable by Baker's Theorem

Input Assumption:

- **●** $c_1(t), c_2(t), c_3(t) \in \mathbb{Q}[t], s, t \in \mathbb{Q}.$
- all inputs (s, r, coefficients of c_i 's) are *L*-bit rational numbers.

Input Assumption:

- $c_1(t), c_2(t), c_3(t) \in \mathbb{Q}[t], s, t \in \mathbb{Q}.$
- all inputs (s, r, coefficients of c_i 's) are *L*-bit rational numbers.
- We get the following estimations:

■
$$\deg(t_*) = O(N), \deg(\alpha(t_*)) = \deg(\delta(t_*)) = O(N), \deg(k) = 1.$$

•
$$h(t_*) = O\left(LN^4 (\log N)^4\right), h(\alpha(t_*)) = h(\delta(t_*)) = O\left(LN^6 (\log N)^4\right), h(k) = O\left(LN^2 (\log N)^2\right).$$

Input Assumption:

- $c_1(t), c_2(t), c_3(t) \in \mathbb{Q}[t], s, t \in \mathbb{Q}.$
- all inputs (s, r, coefficients of c_i 's) are *L*-bit rational numbers.
- We get the following estimations:

•
$$\deg(t_*) = O(N), \deg(\alpha(t_*)) = \deg(\delta(t_*)) = O(N), \deg(k) = 1.$$

•
$$h(t_*) = O\left(LN^4 (\log N)^4\right), h(\alpha(t_*)) = h(\delta(t_*)) = O\left(LN^6 (\log N)^4\right), h(k) = O\left(LN^2 (\log N)^2\right).$$

- By Waldscmidt's theorem, we get:
 - $|F(t_*)| > \exp\left[-O\left(L^3 \log L \cdot N^2 8(\log N)^{13}\right)\right]$, if $F(t_*) \neq 0$.
 - We need $O(L^3 \log L \cdot N^{28} (\log N)^{13})$ bits to solve the zero problem for one $F(t_*)$. → polynomial time!

Conclusions and Directions

Conclusions:

- Found and analyzed nontrivial transcendental problems which are TM-computable.
- Provided explicit bit complexities.

Conclusions and Directions

Conclusions:

- Found and analyzed nontrivial transcendental problems which are TM-computable.
- Provided explicit bit complexities.

Directions:

- Genearlizations:
 - Shortest path with obstacles: ellipse, 3D, ...
 - Collision detection: Elliptic motion ($h(t) = (a \cos t, b \sin t, s \cdot t)$), Two helical motions, Semi-algebraically defined bodies, ...
- The third example? Use of other results from transcendental number theory?
- The zero problem for general transcendental expressions.

Conclusions and Directions

Conclusions:

- Found and analyzed nontrivial transcendental problems which are TM-computable.
- Provided explicit bit complexities.

Directions:

- Genearlizations:
 - Shortest path with obstacles: ellipse, 3D, ...
 - Collision detection: Elliptic motion ($h(t) = (a \cos t, b \sin t, s \cdot t)$), Two helical motions, Semi-algebraically defined bodies, ...
- The third example? Use of other results from transcendental number theory?
- The zero problem for general transcendental expressions.

Thank you!