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path 2 = P0P3 + P3P1 =
√

(−3 − (−1))2 + (3 − 1)2 +
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=
√

8 +
√

17

Determine the sign of: path 1 − path 2 =
√

10 +
√

13 −
√

8 −
√

17 = −0.183704 . . .
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[Scheinerman, Amer. Math. Monthly, 2000]

Nonzero case:

Within machine precision → Can determine the sign.

Less than machine precision → Go arbitrary precision computation.

Zero case: Cannot determine in this way? → Zero bounds

→ Zero problem becomes important!
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Zero Problem

Given a numerical expression, determine exactly whether it is zero or not.

Central to exact qualitative decision.

Can we really determine exactly whether a given expression is zero or not?

Symbolic approach: successive squaring, etc.
always gives an exact answer (for algebraic expressions).
hard for general transcendental expressions.
uniformly slow.

Numerical approach: approximation
fast for most of the input. → adaptive
prone to error. (floating point vs. arbitrary precision)
no guarantee? ← root bounds

−→ We adopt numerical approach!

Trivial with Real RAM model – not realistic

We need decidability with TM!



Bounding Roots of
a Polynomial Away From Zero
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}

= 7
2 .

→ |x| > 2
7 .

But x = 0.0 . . ., a contradiction. → x = 0.

♣ Classical bounds: Inefficient and Ineffective!

→ Constructive Root Bounds



Constructive Root Bound

Some modern bounds: Degree-Measure [Mignotte (1982)], Degree-Height &
Degree-Length [Yap-Dubé (1994)], BFMS [Burnikel et al (1989)], Eigenvalue
[Scheinerman (2000)], Conjugate [Li-Yap (2001)], BFMSS [Burnikel et al (2001)], k-ary
[Pion-Yap (2002)]

For each step of operations {±,×, /, k
√

}, can determine the resulting sufficient
precision bit for the zero test in terms of those of the arguments.

α =
√

x +
√

y −
√

x + y + 2
√

xy, x = a/b, y = c/d, a, b, c, d: L-bit integers
→ The number of bits sufficient to determine the zero problem for α: 96L + 30
(BFMSS), 28L + 60 (Li-Yap), . . .

Key to Exact Geometric Computation (EGC).

No general bound for transcendental expressions!
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Algebraic Numbers and Expressions

Def: α ∈ C is algebraic, if p(α) = 0 for some nontrivial p ∈ Z[x].

Natural numbers, rational numbers,
√

2, i, . . .

Closed under ±, ×, ÷, RootOf()

countable

Algebraic Expressions:

Start with N, and successively apply operations {±,×,÷, RootOf()}. (e.g.,√
2 +

√

5 − 2
√

6 −
√

3)

Values are algebraic numbers if well-defined. (closedness)

Every algebraic number can be represented by an algebraic expression.

Def: α ∈ C is transcendental, if α is not algebraic.

e, π, . . .

most of the numbers are transcendental (uncountable)

transcendental expressions: exp(1 − cos 5) (cf., exp(log 3) )



Algebraic Problems

Inputs are algebraic. (often Z or Q)

Involves zero problems for algebraic expressions only.
Ex. relative configuration of line & circle:
Given a line l : ax + by + c = 0 and a circle C : (x− d)2 + (y− e)2 = r2

with rational inputs a, b, c, d, e, r, determine the relation between them.
→ Determine the sign of the discriminant D, which is algebraic.

Most of the known problems in discrete algorithm.

Decidable in TM-sense.



Transcendental Problem
Input: algebraic

Involves a zero problem for transcendental expression.
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Transcendental Problem
Input: algebraic

Involves a zero problem for transcendental expression.

Currently no general solution in EGC sense. (a challenge in EGC)

Only a few examples which is TM decidable.

Example: Given P, Q ∈ R2 & discs C1, · · · , Cn, Determine exactly the shortest path from P

to Q avoiding Ci’s.

bP bQ

b

b

b
b

b bb
b

b
b

b
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b

Assume: each coord. of P , Q, centers of Ci, radii of Ci are all algebraic.

Seemingly a typical problem in computational geometry – feasible paths.

The first nontrivial example of a transcendental problem which turned out to be TM
decidable. [Chang et al, Int. J. Comp. Geom. Appl. 2006]



Overall Approach

bP bQ

b
b

b b

µ1
µ2

µ3

µ4

µ5

Find Feasible Paths: µ = µ1; µ2; · · · ; µk

Alternating between line segments and circular arcs

Boundary points are algebraic.

Sum up the lengths of







line segments:
√

(· − ·)2 + (· − ·)2

circular arcs: r · θ

Apply Dijkstra’s Algorithm:

Compute a combinatorial (weighted) graph G = (V, E), where vertices V : discs &
edges E: joining two discs.

O(n2 log n), where n: # discs



Length of Feasible Path
→ d(µ) =

∑

i

d(µi) =
∑

j

αj +
∑

k

rkθk

b

b b

P1 P2

rk rkθk

P0

αj

rkθk

∑

αj : length of line segments ⇒ αj = P0P1 algebraic
∑

rkθk: length of circular arcs

cos θk =
r2

k
+r2

k
−P1P2

2

2ri·ri
: algebraic ⇒ θk: transcendental (Lindemann’s Lemma)



Length of Feasible Path
→ d(µ) =

∑

i

d(µi) =
∑

j

αj +
∑

k

rkθk

b

b b

P1 P2

rk rkθk

P0

αj

rkθk

∑

αj : length of line segments ⇒ αj = P0P1 algebraic
∑

rkθk: length of circular arcs

cos θk =
r2

k
+r2

k
−P1P2

2

2ri·ri
: algebraic ⇒ θk: transcendental (Lindemann’s Lemma)

Comparison of Two Feasible Paths:

d(µ1) − d(µ2) → α + r1θ1 + · · · + rnθn α, ri: algebraic, θi: transcendental



Decidability
We have to solve the zero problem for:

Λ = α + r1θ1 + · · · + rnθn

= α − ir1 log eiθ1 − · · · − irn log eiθn

= α + (−ir1) log
(

cos θ1 ± i
√

1 − cos2 θ1

)

+ · · · + (−ir1) log
(
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1 − cos2 θ1

)

→ "Linear forms in logarithms!" : known to be transcendental unless it is zero.
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degrees ≤ d and heights ≤ H. let
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If Λ 6= 0, then ∃ constant C = C(n, d, H) s.t. |Λ| > 2−C .



Decidability
We have to solve the zero problem for:

Λ = α + r1θ1 + · · · + rnθn

= α − ir1 log eiθ1 − · · · − irn log eiθn

= α + (−ir1) log
(

cos θ1 ± i
√

1 − cos2 θ1

)

+ · · · + (−ir1) log
(

cos θ1 ± i
√

1 − cos2 θ1

)

→ "Linear forms in logarithms!" : known to be transcendental unless it is zero.

Baker’s Theorem Let α0, α1, · · · , αn, β1, · · · , βn be nonzero algebraic numbers, with their
degrees ≤ d and heights ≤ H. let

Λ = α0 + α1 log β1 + · · ·αn log βn (linear forms in logarithms).

If Λ 6= 0, then ∃ constant C = C(n, d, H) s.t. |Λ| > 2−C .

So the problem is transcendental but decidable!

How many bits are needed to solve the zero problem?



Some Definitions

α ∈ C: algebraic & p(x) = anxn + · · · + a1x + a0 ∈ Z[x]: its minimal polynomial

Conjugates: roots of p

Degree: deg(α) := deg(p) = n

Height: H(α) := max0≤i≤n |ai|
Absolute logarithmic height: h(α) := 1

deg(α)
log M(α)

Mahler measure: M(α) := |an|
∏n

i=1 max{1, |αi|}, where α1, · · · , αn are all the
conjugates of α.



Some Definitions

α ∈ C: algebraic & p(x) = anxn + · · · + a1x + a0 ∈ Z[x]: its minimal polynomial

Conjugates: roots of p

Degree: deg(α) := deg(p) = n

Height: H(α) := max0≤i≤n |ai|
Absolute logarithmic height: h(α) := 1

deg(α)
log M(α)

Mahler measure: M(α) := |an|
∏n

i=1 max{1, |αi|}, where α1, · · · , αn are all the
conjugates of α.

Example: α = p/q, (p, q ∈ Z are relatively prime.)
→

minimal poly. = qx − p, deg(α) = 1,

conjugates = p/q, H(α) = max{|p|, |q|},
M(α) = |q|max{1, |p/q|} = max{|p|, |q|}, h(α) = max{log |p|, log |q|}



Effective Bound from
Transcendental Number Theory

Theorem. (Waldschmidt) For n ≥ 2, let γ0, γ1, · · · , γn be algebraic numbers, and let
β1, · · · , βn be nonzero algebraic numbers. If

Λ := γ0 + γ1 log β1 + · · · + γn log βn 6= 0,

then

|Λ| > exp {−28n+51n2nDn+2V1 · · ·Vn(W + log(EDV +
n ))(log(EDV +

n−1))(log E)−n−1},

where

D ≥ [Q(γ0, γ1, · · · , γn, β1, · · · , βn) : Q], W ≥ max
0≤j≤n

{h(γj)},

Vj ≥ max {h(βj), | log βj |/D, 1/D}, V1 ≤ · · · ≤ Vn,

V +
n−1 = max {Vn−1, 1}, V +

n = max {Vn, 1}.

1 < E ≤ min {eDV1 , min
1≤j≤n

{4DVj/| log βj |}}.



Bit Complexity

Assume the input is L-bit rational numbers (P/Q, where P , Q are
L-bit integers. (|P |, |Q| < 2L)), and N is the number of discs.

Detailed estimation gives: |Λ| > exp
[

−2O(N2+N log L)
]

.

The number of bits we need to expand to compare the lengths of two
feasible paths is 2O(N2+N log L).



Collision Detection
Involving Helical Motion

Given a helical motion h(t) =

(cos t, sin t, s ·t) of a point p and an alge-
braic motion c(t) = (c1(t), c2(t), c3(t))

of a ball B with radius r, determine
exactly whether they will collide.

p

B
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ci(t) algebraic, if ∃P (x, y) ∈ Z[x, y] s.t. P (ci(t), t) ≡ 0

Natural question (e.g. in CAD)

If both motions are algebraic → becomes an algebraic problem.



Collision Detection
Involving Helical Motion

Given a helical motion h(t) =

(cos t, sin t, s ·t) of a point p and an alge-
braic motion c(t) = (c1(t), c2(t), c3(t))

of a ball B with radius r, determine
exactly whether they will collide.

p

B

Assume algebraic input: s, r, ci algebraic

ci(t) algebraic, if ∃P (x, y) ∈ Z[x, y] s.t. P (ci(t), t) ≡ 0

Natural question (e.g. in CAD)

If both motions are algebraic → becomes an algebraic problem.

Turns out to be another (the second) nontrivial transcendental problem which is
decidable with TM. [Choi et al, Real Numbers and Computers 7, 2006]



How?
?∃t, ||h(t) − c(t)|| ≤ r

Natural assumption: no collision initially

⇔?∃t, r2 = ||h(t) − c(t)||2

= −2c1(t) cos t − 2c2(t) sin t +
{

c1(t)2 + c2(t)2 + (st − c3(t))2 + 1
}

⇔?∃t, a(t) cos t + b(t) sin t + d(t) = 0,

where a(t) = −2c1(t), b(t) = −2c2(t), d(t) = c1(t)2 + c2(t)2 + (st − c3(t))2 + 1 − r2.

⇔



















?∃t, a(t) = b(t) = d(t) = 0 → algebraic problem

or ?∃t, α(t) cos t + β(t) cos t = δ(t),

where α(t) =
a(t)√

a(t)2+b(t)2
, β(t) =

b(t)√
a(t)2+b(t)2

, δ(t) = − d(t)

a(t)2+b(t)2

;?∃t, cos (t ± arccos(α(t))) = δ(t)

⇔?∃t, t ± arccos(α(t)) ± arccos(δ(t)) = 0 mod 2π

⇔?∃t, t ± arccos(α(t)) ± arccos(δ(t)) + 2kπ = 0, (k: between zeros of δ(t) ± 1)



Linear Form in Logarithms Again

F (t) := t ± arccos(α(t)) ± arccos(δ(t)) + 2kπ

→ Determine (exactly) the signs of all extremal points of F .
An extremal point t∗ satisfy:

F ′(t∗) = 1 ± α′(t∗)
√

1 − α(t∗)2
± δ′(t∗)

√

1 − δ(t∗)2
= 0

or α(t∗) ± 1 = 0

or δ(t∗) ± 1 = 0

→ t∗ is algebraic.
→ Determine the sign of:

F (t∗) = t∗ ± arccos(α(t∗)) ± arccos(δ(t∗)) + 2k arccos(−1)

= t∗ ± i log
{

α(t∗) ± i
√

1 − α(t∗)
}

± i log
{

δ(t∗) ± i
√

1 − δ(t∗)
}

± 2ki log(−1)

→ Linear forms in logarithms! → Decidable by Baker’s Theorem
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Bit Complexity

Input Assumption:

c1(t), c2(t), c3(t) ∈ Q[t], s, t ∈ Q.

all inputs (s, r, coefficients of ci’s) are L-bit rational numbers.

deg(c1), deg(c2), deg(c3) ≤ N .

We get the following estimations:

deg(t∗) = O(N), deg(α(t∗)) = deg(δ(t∗)) = O(N), deg(k) = 1.

h(t∗) = O
(

LN4 (log N)4
)

, h(α(t∗)) = h(δ(t∗)) = O
(

LN6 (log N)4
)

,

h(k) = O
(

LN2 (log N)2
)

.

By Waldscmidt’s theorem, we get:

|F (t∗)| > exp
[

−O
(

L3 log L · N28(log N)13
)]

, if F (t∗) 6= 0.

We need O
(

L3 log L · N28(log N)13
)

bits to solve the zero problem for one
F (t∗). → polynomial time!
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Conclusions and Directions
Conclusions:

Found and analyzed nontrivial transcendental problems which are
TM-computable.

Provided explicit bit complexities.

Directions:

Genearlizations:

Shortest path with obstacles: ellipse, 3D, . . .

Collision detection: Elliptic motion (h(t) = (a cos t, b sin t, s · t)),
Two helical motions, Semi-algebraically defined bodies, . . .

The third example? Use of other results from transcendental number
theory?

The zero problem for general transcendental expressions.

Thank you!


	Geometric Computation: An Example
	Geometric Computation: An Example
	Geometric Computation: An Example
	Geometric Computation: An Example
	Geometric Computation: An Example
	Geometric Computation: An Example

	Zero Problem
	Zero Problem
	Zero Problem
	Zero Problem
	Zero Problem
	Zero Problem
	Zero Problem
	Zero Problem

	Zero Problem
	Zero Problem
	Zero Problem
	Zero Problem

	�egin {array}{c} 	ext {Bounding Roots of} \ 	ext {a Polynomial Away From Zero} end {array}
	�egin {array}{c} 	ext {Bounding Roots of} \ 	ext {a Polynomial Away From Zero} end {array}

	Constructive Root Bound
	Algebraic Numbers and Expressions
	Algebraic Numbers and Expressions
	Algebraic Numbers and Expressions

	Algebraic Problems
	Transcendental Problem
	Transcendental Problem
	Transcendental Problem
	Transcendental Problem
	Transcendental Problem
	Transcendental Problem
	Transcendental Problem

	Overall Approach
	Length of Feasible Path
	Length of Feasible Path

	Decidability
	Decidability
	Decidability

	Some Definitions
	Some Definitions

	�egin {array}{c} 	ext {Effective Bound from} \ 	ext {Transcendental Number Theory} end {array}
	Bit Complexity
	�egin {array}{c} 	ext {Collision Detection} \ 	ext {Involving Helical Motion} end {array}
	�egin {array}{c} 	ext {Collision Detection} \ 	ext {Involving Helical Motion} end {array}
	�egin {array}{c} 	ext {Collision Detection} \ 	ext {Involving Helical Motion} end {array}

	How?
	Linear Form in Logarithms Again
	Bit Complexity
	Bit Complexity
	Bit Complexity

	Conclusions and Directions
	Conclusions and Directions
	Conclusions and Directions


