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A Bit of Transcendence

A. Irrationality of e

� PN :=
∑

n≤N(−1)n N!
n!

� QN := N!

|PN −QN/e| = N!
(

1
(N+1)!

− 1
(N+2)!

+ 1
(N+3)!

+ · · ·
)

Three Main Remarks: (say with N odd)
� The quantity PN −QN/e is non-zero (even positive)!
� If e were rational, then for all N > N0,

QN/e and therefore PN −QN/e would be an integer.
� But 0 < PN −QN/e < 1/(N + 1).
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Here we see the basic steps: We consider algebraic expressions
in the number we are interested in. The expressions are shown
to be non-zero. Then we show that the expressions are too
small to allow the number to be rational.
We need to recall the following basic fact from classical
elimination theory:



Classical Resultant Expansion

Res(P,Q) = bm
n

∏
Q(α)=0 P(α) =

det

∣∣∣∣∣∣∣∣∣
a0 a1 ... am 0 0 ... 0
0 a0 ... am−1 am 0 ... 0

... ...

... ... a0 a1 am
b0 b1 ... bn−1 bn 0 ... 0
0 b0 ... bn−1 bn ... 0

... ...

... ... bn

∣∣∣∣∣∣∣∣∣ =

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 ... am 0 0 ... xn−1P(x)

0 a0 ... am−1 am 0 ... xn−2P(x)

... ...
...

... ... a0 a1 P(x)

b0 b1 ... bn−1 bn 0 ... xm−1Q(x)
0 b0 ... bn−1 bn ... 0

... ...
...

... ... Q(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



Moral(s) of story

� Relatively prime polynomials cannot be simultaneously
small.

� Small polynomials at algebraic points vanish there:
P(α) = 0, gcd(P,Q) = 1 ⇒

|Q(α)| ≥ (m + n)−(m+n)H(Q)− deg PH(P)− deg Q

� Liouville’s example (1844): λ :=
∑

n 10−n! 6∈ Q.

� For QN(x) := (10)N!x− (10)N!
∑N

n=0 10−n!, deg QN = 1,
H(QN) ∼ (10)N!, |QN(λ)| ∼ (10)−(N+1)! ∼ H(QN)−(N+1)

� Criterion used in every proof of transcendence or
independence.
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Fredholm Series

Theorem (Mahler (1929))

The Fredholm series f(z) =
∞∑

n=0

z2n
assumes transcendental

values at every non-zero α ∈ Q, 0 < |α| < 1.

Sketch of Proof (for α = 1/2):
a) Thue-Siegel: For N ∈ N, choose a0(z), . . . , aN(z) ∈ Z[z] not all
zero s.t. deg ai ≤ N, |coeffs ai| ≤ N2 and

FN(z) =
∑N

0 ai(z)f(z)i

vanishes at z = 0 to an order N′ ≥ N2/2.

b) Crude Zero Estimate: The functional equation

f(z2) = f(z)− z

shows that f(z) is not an algebraic function and therefore
N′ < ∞.



Fredholm Continued
c) Upper Bound: (Analysis)

|FN(α2k
)| ∼ |CN′ ||α|2kN′ ≤ |CN′ ||α|2k−1N2

d) Lower Bound: (Algebra and Assumption that f(α) is
Algebraic)
Again from the Functional Equation,
f(z2k

) = f(z)− z− z2 − · · · − z2k−1

2kNFN(α2k
) = PN(f(α)),

where PN ∈ Z[x],

degx PN ≤ N, |coeffs PN| ≤ ec12kN

So by the resultant inequalities

|FN(α2k
)| ≥ e−c22kN.



Transcendence Proofs

1. Produce Auxiliary Function in functions whose values give
the numbers we want.

2. Show that certain interesting values are non-zero.

3. Estimate the absolute values of the values from above
(analysis).

4. Show that the non-zero values cannot be small if the
numbers are algebraic.



Role of Zero Estimates in Transcendence Proofs

1. Produce Auxiliary Functions in functions whose values give
involve the numbers we want.

2. Show that certain interesting ideal of polynomials in the
values are non-zero (perhaps in a certain region).

3. Estimate the absolute values of the function values from
above (analysis).

4. Show that the non-zero values cannot be small nearly zero if
the numbers are too algebraically simple/dependent.



Smallness vs. Zeroes

For a polynomial, or an ideal of polynomials:

� Order of a zero (of a vector of functions) at a point gives a
notion of smallness

� Absolute value gives a notion of smallness

From the arithmetic point of view of effective elimination
theory where coefficients do not count
(Nesterenko-Philippon-Brownawell), there is NO
difference!

From the point of view of transcendence, BOTH are (so far)
necessary. The duplication “feels” redundant, but we don’t
know how to unify the considerations.
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Zeroes are Maniable

From the geometric point of view of multiplicity (Bezout’s
Theorem à la Brownawell-Masser-Wüstholz-Philippon), there is
a difference.

But wait! There is a common refinement, which can treat the
zeros in either of two different ways. (G. Rémond thesis) Both
essentially components of Faltings heights, cf. Arakelov theory,
whatever that is.



The Two Points of View

Arithmetic:
Polynomials have

� Degree and
� Coefficients from a ring with a valuation:

� deg for polynomials
� absolute value for integers, height for algebraic numbers.

Geometric: Polynomials have
� Multidegrees,

i.e. degrees with respect to various (usually two) sets of
variables. Here one degree keeps track of the degrees of
“coefficients”.

Before beginning with the first approach, we give parallel
considerations:
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Simple case: Zeroes of F(z) = P(z, ez) ∈ C[z, ez]

More naive than Tijdeman: We count only zeroes of order at
least two, assume P irreducible, degz P = L, degez = M: In both
approaches, differentiate to obtain G(z) = Px(z, ez) + Py(z, ez)ez.

Arithmetic Approach Geometric Approach

H(z) := Resy(F,G) ∈ C[z]

deg H ≤ 2LM,
ordzi H ≥ min ordzi F, ordzi G
≥ ordzi F− 1

∑
zi

ordF− 1 ≤ 2LM.

Homogenize wrt x, y; Ele-
ments of I = (Fh,Gh) vanish
to order ≥ ordzi F− 1

I “is” irrelevant wrt y, has de-
gree at most 2LM wrt x. So
if we accept arbitrary powers
of ez, we can get polys in x of
degree ≤ 2LM in I.

∑
zi

ordF− 1 ≤ 2LM.
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Chow Forms for Effective Elimination Theory

� Chow Form of a Prime Ideal, of a Cycle
� Chow Form of a Principal Ideal
� Resultant of a Chow Form and a Homogeneous Polynomial
� Degree of a Chow Form, of a Resultant (Bezout’s Theorem)
� Value of a Chow Form at a Projective Point

� For a Principal Ideal
� For a Resultant

� Notion of complexity in constant ring (degree or size)
which carries over to Chow Forms of resultants

� Lower bound on constants in terms of complexity
(Liouville: upper bound on number of zeros or lower bound
on algebraic numbers)



Multidegrees for Zero Estimates

� Multidegrees for multihomogeneous ideals
� Bezout-Krull-van der Waerden Theorem (Intersection

degrees)

Hilbert-Samuel multiplicity

Q: Why bother with the more complicated looking Chow form
set-up?

A: Most transcendence applications require the first approach in
the “second elimination” anyway.
Exception: Siegel-Shidlovsky. But historically even there the
first approach partially effectivized the zero estimate known as
“Shidlovsky’s Lemma”.
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Chow Forms

Preliminary Remark: Planes through a Point in Pn

Let x be represented by [x0, . . . , xn]. All linear relations
xtr · u =

∑
i uixi = 0 on the coordinates xi are generated linearly

by the ones with

u = (0, . . . , xk, . . . ,−xj, . . . , 0) =: σjk · x,

where

σjk =

 1
−1

 ,

with entries 0 except in the (j, k) and (k, j) places. between the
various pairs of coordinates. A generic skew-symmetric matrix
has the form S =

∑
j<k sjkσjk with indeterminates sjk, the

coefficients of a generic hyperplane through x can be given by
u := Sx.



Chow Form of a Variety/Prime Ideal

Let R be UFD with field of quotients k. Let V be an irreducible
variety in Pn of dimension d corresponding to a homogeneous
prime ideal P in k[x0, . . . , xn]. For j = 0, . . . ,d, we have
hyperplanes

Hj : uj0x0 + · · ·+ ujnxn = 0.

Then
H0 ∩ · · · ∩Hd−1 ∩V =: {α1, . . . , αg ⊂ Pn}

are generic zeros of P. Normalizing say so that some coordinate
of the αi equals 1, there is a ∈ R[u0, . . . ,ud−1] s.t.

FP(u0, . . . ,ud) := a
∏

j

αj · ud

is irreducible. Then the Chow Form

FP(u0, . . . ,ud) = 0

exactly when H0 ∩ · · · ∩Hd−1 ∩Hd ∩V is nonempty. This
extends to cycles.



Chow Ideal: Motivation for Value of Chow Form

Writing
FP(xS0, . . . , xSd) =

∑
pµ(x)µ

where µ are monomials in entries of the generic skew symmetric
Si gives generators of the Chow ideal of P, “almost generators”
of P. In fact,

〈pµ(x)〉 = P
⋂
E ,

where E is embedded in P. This motivates the definition of the
projective “absolute value” of P at a point:

|FP|ω := max |pµ(ω)|/‖ω‖(d+1) deg P.



Resultant of a Chow Form and a Homogeneous
Polynomial (Form)

Theorem (Nesterenko, ... Arithmetic Chow Version of
Bézout for Hypersurface Sections)

If Q ∈ R[x] is homogeneous, Q /∈ P, then

Res(FP,Q) := adeg Q
∏

Q(αi) =
∏

Fej
j

where the Fj are the Chow forms of the isolated prime ideals Pj

of (P,Q) and ej is the length (multiplicity) of the Pj-primary
component.
When R = C[x], and zi a point of C× Cn,

degx Res(FP,Q) ≤ deg FP · deg Q,

ordzi Res(FP,Q) ≥ min{ordFP, ordQ}



Dimension Zero Case & Estimates over Z

Case dim P = 0

“Base” Case When dim P = 0, Res(FP,Q) ∈ R is simply
non-zero, with the same estimate on degree when R = C[z].

Case R = Z
Over Z, (with the analogous remark when dim P = 0),

log ht(Res(FP,Q)) ≤ Cn(degu0
FP log ht Q+

deg Q log ht FP + deg Qdeg FP).

log |Res(FP,Q)|ω ≤ RHS + max log{|FP|ω, |Q|ω}.



Meta-Outline for Zero Estimates

Setting We are given a polynomial Q in z and
functions f1, . . . , fn and a set of points
Σ.

Induction Generate “new” polynomials using
properties of the fi,

� Differential Equation or
� Addition Formula,

without losing much of order of zeros.
End.Game Eliminate variables x1, . . . , xn to

obtain a polynomial in z of known
(bounded) degree and almost as many
zeros as Q(z, f1, . . . , fn). Compare.

What is a “new” polynomial?
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“New” Polynomials

Properties
� Order of zero relatively large.
� Degree not too large.
� Allow elimination of variables, i.e. decrease

dimension of some isolated components having
high order of vanishing w.r.t. degree(s)

How are they generated?

Two starting points
� Throw out “weak” primary components & use

the original polynomial
� Concentrate on the “strong” prime

components & use some good generator of the
prime ideal

Properties Used
� Differential Equations (Differential Equations)
� Translation Formulas (Algebraic Groups)
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Setting of Nesterenko’s Zero Estimate

Setting: A differential ring S = C[z, x1, . . . , xn] = R[x1, . . . , xn]
with operator D mimicking the effect of derivation on the ring
generated by a solution of a system of linear differential
equations over C[z],

Y′ = A(z)Y :

� Dz := T(z)
� Dxi :=

∑
T(z)aij(z)xj,

where T(z) ∈ R is a LCD of the aij(z). (Differentiation alone
introduces denominators from the aij.)
In this setting, Chow forms F for polynomial ideals in S and
cycles have both

� deg F := degu0
F and

� degz F := degz F.



Fundamental Fact: Derivation Lowers Order.

Fix a solution Y of this system and define the order (of
vanishing) of any polynomial P(z, x1, . . . , xn) at a point, say
z = 0 to be

O(P) := ordP := ord0(P ◦Y).

The basic point is that the operator D lowers ordP whenever
ordP is positive.
For a prime ideal P with Chow Form F := FP, set

O(F) := ordF := min
P∈P

ordP.

Lemma
If 0 < O(P) < ∞ and T(0) 6= 0, then there is a polynomial
P 6∈ P with

� ordP = (ord P)− 1 and
� degz P ≤ degz P + deg T, degx P ≤ deg P.



D-Operator Eventually Escapes All (Interesting)
Primary Components

Lemma (Nesterenko, Br-Masser)

If Q is an isolated component of I,and T(0) 6= 0, then for some
k ≤ exponent(Q), Dk(Q) 6⊂ P.

The exponent of a P-primary ideal Q is the least e ∈ N such
that Pe ⊆ Q; it is at most the multiplicity of Q.

Proof of Lemma: Take F 6∈ P but in all other primary
components of I and take Q ∈ Q with k least such that
DkQ 6∈ P. Then by the Product Rule

Dk(FQ) ≡ FDkQ 6≡ 0 mod P. �



Setting for Zero Estimates for Solutions of DEs

Notation.
� Let Pd be the (homogenization wrt x of the) ideal of

algebraic relations holding for y1, . . . , yn over R = C[z]. Set
hd = degz FP, Dd := degu0

FPd
:= deg Pd,

t := deg max T(z)aij.
� Let Qd := Q be a given polynomial (think with a high order

E0 of vanishing at z = 0). Set degz Q = hQ, degx Q = DQ.

� Goal: We want a function, say B, such that, if Qd 6∈ P,
then O(Qd) ≤ B(Qd).

� Strategy: Differentiate our way out of ideals.
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Outline of Nesterenko’s Proof when T(0) 6= 0

Recursion. Set i = d. While i ≥ 0, let Fi−1 be a Chow form
obtained by omitting from Res(Fi,Qi) the factors based on
prime ideals P with O(P) = 0. Then

� O(Fi−1) ≥ minO(Fi),O(Qi) and
� degz Fi−1 ≤ (d− i)hQDdDd−i−1 +hdDd−i

Q +(d− i)tD2
dD

2(d−i),

� deg Fi−1 ≤ deg Fi · deg Qi ≤ DdDd−i
Q .

Let Qi−1 be a polynomial produced by taking sufficiently
generic integral combinations of the polynomials produced by
differentiating out of the primes of Fi−1 with

derivatives of order ≤ deg Fi−1 ≤ DdDd−i
Q

so that degx Qi−1 ≤ DQ

� degz Qi−1 ≤ hQ + tDd(D + · · ·+ Dd−i+1)
� O(Qi−1) ≥ 0(Fi)−DdDd−i

Q .



Upshot

Theorem (Nesterenko ±ε)

If P(z, x) ∈ C[z, x1, . . . , xn] with O(P) < ∞, then

O(P) ≤ dhQDdDd−1 + hdDd
Q + dtD2

dD
2d + dDdDd.

What happens when T(0) = 0? Then the upper bound
increases essentially by a constant factor
depending on the system.

Lemma (Nesterenko)

There is a constant B ≥ 0 s.t. if P is a prime ideal of S with
D(P) ⊂ P, then O(P) is either ∞ or ≤ B.

Reason: If there is a prime ideal invariant under T(z)D and
properly containing the ideal of relations on Y, then there is a
minimal one P0.



Remark on Method

Cancelling “weak” primary components allowed us to generate
new polynomials based on the original one. Nesterenko’s first
method used derivatives of the the Chow ideal. So at each step
the degrees w.r.t. x of the Qi would essentially square. So the
bound would involve hQD2n

. Actually Nesterenko had:

hqD(n+1)n+1
,

which he later improved to the optimal(!) hqDd.
The key to this improvement is to show that, in fact, the
degrees of an ideal behave almost as if the ideal were a complete
intersection!



Degrees of Polynomial Elements and Hilbert Functions

Theorem (Nesterenko)

Let the prime ideal P ⊂ C[z, x0, . . . , xn] be homogeneous in the
x. Then there is P ∈ P which is homogeneous in the x such
that

� degx P ≤ C1(deg P)1/(1+codim P) and
� degz P ≤ C2(degz P)/(deg P)codim P/(1+codim P).

This has the effect of letting the “new polynomials” always have
about the same degrees as the original one. Thus the degree in
z after all the resultants have been formed is, up to a constant,
hdDd + hQDdDd−1 + DdDd.
However other results still utilize the approach outlined of
omitting “weak primes”.



Liouville- Lojasiewicz Inequality

Theorem (Br-. . . -Hickel-Br)

Let P1, . . . ,Pm ∈ Z[x] be (ordinary) non-zero polynomials of
degrees at most D with log |coeffs| ≤ h. Then there are integers
e0, e1, e2 depending only on the Pi such that, if Z0 denotes the
isolated finite zeros of the Pi, then

max
|Pi(ω)|

1 + ‖ω‖deg Pi
≥ Ce−C(h+D)Dn dist(ω, Z)e1

1 + ‖ω‖e2
min{1,dist(ω, Z0)e0},

where e0 + e1 + e2 ≤ Dn, e1 ≤ e2, and the C′s are explicit
constants depending only on n,d.

The exponents e0, e1 refer to multiplicities of finite components
of zeroes of the Pi. So if there are none, e0 = e1 = 0.
Whenever Pi ∈ k[x] where k is an algebraically closed field with
valuations satisfying a product formula, a similar result holds.
Without the product formula, the C are no longer explicit.



Philippon’s Criterion for Algebraic Independence

Theorem (Philippon)

Let ω ∈ Cn and suppose that P ∈ Z[x] is a prime ideal of
dimension d and deg P + log h(P) ≤ σd such that ω ∈ Z(P).
For a > 1 and N ≥ N0, let {DN}, {SN} denote monotonically
increasing, unbounded sequences of positive integers such that
DN+1 ≤ DN, SN+1 ≤ aSN. Assume that C > 0 is sufficiently
large and that for each N ≥ N0 there is an ideal JN generated
by homogeneous polynomials Pk ∈ Z[x] such that

� JN has only finitely many zeros within the ball BρN(ω) of
radius ρN := exp(−CDd

NSnσd) centered about ω,
� deg Pk ≤ DN, deg Pk + log |coeffs Pk| ≤ SN, and
� log |Pk(ω)| ≤ Cd log ρN.

Then for all N ≥ N1, the point ω is a zero of JN.



Philippon’s Alternative (Beginning)

One basic property used previously was that, if both F and Q
are small at ω, then so is Res(F,Q). Philippon noted another
sufficient reason for Res(F,Q) to be small. It uses the notion of
projective distance:

dist(ω, θ) :=
max |ωiθj − ωjθi|

(max |ωi|)(max |θi|)

Lemma (Philippon)

If F is the Chow form of a homogeneous prime ideal of C[x]
intersecting Z only in 0, and if, for each of its zeros β,

‖Q‖ω ≤ dist(ω, θ)µ,

where 0 ≤ µ ≤ 1, then

‖Res(F,Q)‖ ≤ |F|µωH(F)deg QH(Q)deg Fe8n(deg F deg Q).



Philippon’s Partial Converse

Lemma
If F is the Chow form of a homogeneous prime ideal of C[x] of
dimension d ≥ 0, then for every ω ∈ Pn(C), there is a zero β of
P such that

dist(ω, β)deg F ≤ ‖F‖ωe3n2 deg F.

This allows Philippon to use either Nesterenko’s inequality or

‖Res(F,Q)‖ ≤ |F|µωH(F)deg QH(Q)deg Fe8n(deg F deg Q).

of the previous slide depending on the location of common zeros
in establishing his criterion.



Linear Independence in Commutative Algebraic Groups
(Gelfond-Schneider-Baker Theory)

Theorem (Gelfond-Schneider)

If ea ∈ Q, a 6= 0,b ∈ Q \Q, then (ea)b 6∈ Q.

Gelfond’s Proof.
Consider z 7→ (ez, ebz) ⊂ Gm(C)2. Form an auxiliary function
FN(z) =

∑
i,j≤N ci,je(i+jb)z having zeroes

� at points Γ([
√

N log N]) = {0, a, . . . , [
√

N log N] · a = `0a}
� of order N0 ≥ [

√
N3/ log N] This leads to non-zero

derivative of order ≈ N3/2/(log N)1/2 with
� absolute value log |FN1

N (l1)| ≈ −N2 log N, 0 ≤ `1 ≤ `0 but
� size (ca.N3/2(log N)1/2) to obtain a contradiction.



Thus this proof differentiates its way out of the ideal of
polynomials vanishing at the points (ea, eab) ∈ Gm(C)2.

Schneider’s Proof.
Consider z 7→ (z, eaz) ⊂ Ga(C)×Gm(C). Form an auxiliary
Function FN(z) =

∑
ci(z)eiaz

� deg ci ≤ N3/(log N)2, i ≤ N
� at points of Γ(N) = {j + `b: j, ` ≤ L0 = N2/ log N}
� This leads to a non-zero value at j + `b with j, ` ≤ C0L0

� with absolute value |FN(j + `b)| ≤ −N4/(log N) but
� size ca. N3/ log N.

Thus this proof shifts out of the ideal of functions vanishing on
the image of Γ(N), i.e. points of the form (γ, eaγ), γ ∈ Γ(N).
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Degrees of Homogeneous Ideals

Hilbert Functions, Hilbert Polynomials

Hilbert function of a homogeneous ideal I (unmixed) in
R = k[x]:

H(t, I) := dim dimk Ht.

where the Ht are the homogeneous components of the graded
ring R/I = H0 + H1 + . . . .

Theorem (Hilbert)

Given I, there is a polynomial P(I, t) ∈ Z[t] such that
� for every t ≥ t0(I), H(I, t) = P(I, t),
� deg P = (homogeneous) dim I, say g, and
� P(I, t) = (deg I)/g!tg+ lower order terms.



Multiplicities and Degrees in Unmixed Homogeneous
Ideals

Fact 1 If Q is P-primary of length `Q, then deg Q = `Q deg P.
Fact 2 If I = Q1 ∩ · · · ∩Qr is a primary decomposition of the

unmixed homogeneous ideal I, then
deg I =

∑
Qi =

∑
`Qi

deg Pi.
Fact 3 (Bezout’s Theorem Krull) If I is unmixed as above and Q is

homogeneous, Q 6∈
⋃

i Pi, then
deg(I,Q) = (deg P) · (deg Q).



Vanishing Along an Analytic Subgroup of a
Commutative Algebraic Group

Let expG : Cn → G(C) be the exponential map of a
commutative algebraic group. Let Ψ: Ck → G(C) be analytic
with Ψ(z0) = g0, and let P be a polynomial. Then we say that
P vanishes at g0 to order at least T along Ψ if P ◦Ψ vanishes at
z0 to order at least T.

If e ∈ Σ ⊂ G, then we define Σ(n) := {σ1 + · · ·+ σn : σi ∈ Σ}.
In the statement of the theorem of Masser-Wüstholz-Philippon,
let G ⊂ Pn(C) be a commutative connected algebraic group of
dimension d, e ∈ Σ ⊂ G(C), finite, and let Ψ be an analytic
subgroup whose image contains Σ.



Zero Estimates on Commutative Algebraic Groups

Theorem (Masser-Wüstholz-Philippon)

Let P be a homogeneous polynomial of degree D not vanishing
identically on G, but vanishing at each Σ(d) to order at least
dT + 1, T ≥ 0. Then for some proper connected algebraic
subgroup H(

T + s
s

)
Card

(
Σ + H

H

)
(deg H)Ddim H ≤ (deg G)(cD)dim G.

Moreover H is contained in a translate of G ∩ {P = 0}, and it is
defined in G as a component of the zeros of additional
polynomials of degrees ≤ cD, where c depends only on G.



Some Ideas in the Proof

The addition formulas for addition by elements σ ∈ Σ give an
action τσ on R = C[x]. For a homogeneous ideal I ⊂ R, define
τ(I) := (I, . . . , τσI, . . . ), where σ ∈ Σ. Let I0 := (I(G),P) and
define inductively

I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Id,

where Ij+1 = τ(Ij). We have a chain of d + 1 ideals properly
containing the ideal I which has dimension d. So some

dim Ij = dim Ij+1,

i.e. translation by Σ does not escape some isolated prime. We
find that translation permutes certain isolated primes.
The subgroup fixing the related algebraic set is essentially our
H.



Derivatives and Applications

This did not take differentiation into account. In some sense –
Anderson-Baker-Coates – the action of derivatives and
translations commute. So differentiate as well T times to
produce Ij+1 from Ij.

Applications

In a particular case, show that the conclusion does not hold.
Then neither can the polynomial vanish so much. So we obtain
a non-zero value. To apply the independence criteria, we need
no nearby zeroes! Masser-Wüstholz showed how.

Products
We often need to work with products of groups. This means
treating different variables differently ...
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Multihomogeneous Degrees àla van der Waerden

Let I be an unmixed ideal which is bihomogeneous, i.e. with
generators simultaneously homogeneous in two different sets of
variables, x, y. Set

H(I; s, t) := dimk Hs,t,

where k[x, y]/I :=
∑

Hi,j is the bi-graded graded ring.

Fact 1 There is a polynomial P(s, t) ∈ Z[s, t] such that when
s + t ≥ n0, H(I; s, t) = P(s, t),

Fact 2 deg P = (proj) dim I(= g), say,
Fact 3 P(s, t) =

∑
i+j=g(gi,j/(i!j!))sitj+ lower terms.



Properties

Then, as before,
Fact 4 If Q is P-primary of length `Q, then each

gij(Q) = `Qgi,j(P).
Fact 5 If I = Q1 ∩ · · · ∩Qr is a primary decomposition of the

unmixed bi-homogeneous ideal I, then each
gi,j(I) =

∑
l gi,j(Ql) =

∑
l `Ql

gi,j(Pl).
Fact 6 (Bezout’s Theorem) If I is unmixed bihomogeneous as

above and Q is bi-homogeneous, Q 6∈
⋃

l Pl, then
gi,j(I,Q) = gi+1,j(I)(degx Q) + gi,j+1(I)(degy Q), written as
(deg I) ∗ (deg Q).



Theorem (Masser-Wüstholz-Philippon)

Let T ∈ N, P be a multi-homogeneous polynomial in the blocks
of variables x1, . . . , xp, each of size N1, . . . ,Np, of multidegree
D1, . . . ,Dp. Assume that P vanishes along the analytic
subgroup A to order ≥ nT + 1 at every point of Σ(n). Then
there is a connnected algebraic subgroup G′ of G such that:

� G′ is an isolated component of an ideal generated by I(G)
and polynomials of multidegrees at most (c1D1, . . . , cpDp),

� G′ is contained in G ∩ {P = 0}, and

(
T + codimA(A ∩G′)

codimA(A ∩G′)

)
Card

(
Σ + G′

G′

)
×

deg(G′) ∗ (D1, . . . ,Dp)∗ dim G′ ≤ deg(G) ∗ (c1D1, . . . , cpDp)∗ dim G.


