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IR behavior of gauge theory

I IR behavior of gauge theory is badly understood
- Confinement, chiral symmetry breaking, mass gap

E How to think about it ?
- We need nonperturbative physics

E Standard perturbation theory : ¥ a.g"

£ ‘t Hooft's idea : take large N of SU(N) with ¢°~N  fixed



SUSY Gauge Theories

i

Essential for beyond Standard Model

Exactly Computable Non-perturbative Effects

— Holomaorphy (Seiberg) for N =1 3YM (+ matter)

— Seiberg-Witten Solution for N = 2 8YM (+ matter)
-Su perpotential ( Fterm )

— Duality (Stong Weak Duality)

— Moduli Space via effective geometry

Connections to String Theory

— Open / Closed Duality

— Calabi-Yau Compactifications (Special Geometry)

Large N duality (Vafa)

& More complicated example of "t Hooft's conjecture
- AdS/CFT (Maldacena)

¢ N-=>1 of Chern-Simons theory on g3

Is equivalent to topological strings on noncompact
Calabi-Yau 3-fold (~ blown up of the conifold)

g 1l A Superstrings on conifold background in the
presence of N D6 branes wrapped around S3 and
filling spacetime (OPEN)

<-> Topolgical string on resolved conifold.
RR-flux and no branes (CLOSED)



Strings on Calabi-Yau Spaces

Calabi-Yau n-fold reduces SUSY by 1/2"~*
D-branes reduce SUSY by %
D-branes on CY3 = 4 Supercharges

= D=4, N=1 SUSY Gauge Theories

' CY compactification with Ramond-Ramond Flux
gives Superpotential (Gukov-Vafa-Witten)
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N = 2 Super Yang-Mills
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Seiberg-Witten Curve : genus N-1 Riemann Surface
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Dijkgraaf-Vafa

Non-Perturbative Dynamics of A" > 1 SUSY Gauge
Theories and the Effective Geometries
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Planar Diagrams of Large N Matrix Modeis

@ (Perturbative Calculation)



Seiberg-Witten System

© Family of Riemann surfaces with genus g

E Meromorphic differential : dS

¥ From above data one can define prepotential

N = 1 Super Yang-Mills
Vector Supermultiplet V(2,6,8) 1 (Aps das Ag)
Chiral Field Strength  Wa = DFPe ¥ Dap¥
Wa = da + 8 Fop5
SYM Action

deﬁTTr{W&Wﬁ}EQ'S -+ (c.c.)
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Gauge Coupling e



Power of D-V

¥ Nonperturbative instanton calculus can be derived
from the simple zero dimensional theory in the Large
N limit

¥ Perhaps expected’ : Universality classes of Effective
actions and their integrability
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But is a highly non-trivial statement

Field Theory Proof of D-V

E Dijkgraaf, Grisaru, Lam, Vafa, Zanon



QCD and SYM

Quark (fundamental) = Gluino (adjoint)
Confinement

Mass gap

E Gluino condensate  (\\) = const.AZe2™ik/Ne
Exactly calculable

£ Discrete symmetry
U{1)y 270 o2
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Veneziano-Yankielowicz
Effective Superpotential

r Glueball Superfield S = o a VW)

l/ddﬂ:dzf}ﬁ’rﬂff(.g)
—i5 #]D : — *\.J 4+ 27irTS
L T &
ef_f L g ﬂﬂ J

Gives the right gaugino condensate for dW =0



Derivation of V-Y

¢ Some symmetries of classical SYM are anomalous :

(trace of energy momentum, supercurrent, gluing
current) = forms a supermultiplet

E Some effective fields can summarize all the
information about the anomalous Ward identities.

£ Veneziano-Yankielowicz effective action has kinetic
term invariant under scale and R-rotation.

Potential term is such that it gives the anomalous
Ward identity for the chiral rotation.

¥ SUSY gives all other anomalies.

V-Y Superpotential from MM

E Matrix Model Partition Function
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Fg = sum of genus g graphs

‘t Hooft Large N Limit ¢gs —+ 0, N — o0, 8= g;N
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we can obtain the planar matrix model free energy as follows

2§
__EF'D

e 92 - Triv(¢)

g5

- voIU(N) / ek

The volume of the group gives the V-Y superpotential

(27)2N(N+1)

Vol(U(N)) = (N — 1)I(N — 2)!-..312!

Adding Flavor

£ Affeck-Dine-Seiberg Superpotential can be derived
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¥ Seiberg’s duality
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B Duality in Matrix Models?



Loop Equations and
Seiberg-Witten

¥ Partition function of gas of eigenvalues
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Dijkgraaf-Vafa and
Seiberg-Witten

¥ The N = 2 superpotential takes the form
Wiree(®, Q) = V2QL® Q) Jij + V2m;QLQ)
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Integrable Models and S-W

E Integrable Model : t — Function of Whitham Hierarchy
£ SUSY gauge theory : prepotential

(prepotential determines the Wilsonian effective action
in the Coulomb phase)

E Mutually beneficial
B Solutions of SW found via Integrable Models
Ex. Gauge theory with matter in adjoint representation
from twisted Calogero-Moser system
E Discovery of New Integrable Models
Ex. Spin chains with twisted monodromy



Virasoro Constraints

E Dijkgraaf, Verlinde, Verlinde (1991)
Fukuma, Kawai, Nakayama (1991)
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Loop eqg. — Virasoro constraint
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Virasoro constraint and
generalizations
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E For this we get the Virasoro constraint
E We can have CFT formulation of the matrix model

¥ W-algebras for 2-matrix models

Integrable Hierachies

E Definition a la Liouville

- A Hamiltonian system with 2N dimensional phase
space is integrable iff there exist exactly N
functionally independent conserved quantities. The

Poisson brackets of these conserved guantities with
one another vanish

£ Field theory = Infinite degrees of freedom
- Inifinite number of conserved quantities
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KdV Hierachy

KdV Equation ﬁ —Emﬂ ‘ 2{}3”,
& o 5
Bi-Hamiltonian System ﬁ — My = HaD
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Lax Formalism —
Generalized KdV Hierachy
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Generalized KdV and KP

KdVby L =821+

. : i) Pt m}
KP hierarchy by Q=art+ 3 @t ==
=3 tin

= [Q%. Q)]
- To the p-th reduction of the generalized KdV
hierarchy we can associate the t—function related to
the differential operator L
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drot,

o
resLi P = log T

Residue is defined as the coefficient of 91

t-function

. The t—function completely defines the differential

I = !
operator L since we have resLi/P — e
p

- For the KdV operator we have ,, — 2@5 log T

- The partition function of one matrix model is the
square root of the t—function of the KdV hierachy

(Douglas, 1920)



Baker-Akhiezer function

£ The opposite problem: how to construct t function out
of L.

& Consider the eigenfunction y of L. 1., — _»,

E U is called the Baker-Akhiezer function

Krichever construction

E Special case : When only finite number of the

integrals of motion are algebraically independent
F Finite Gap Solutions for &L g cpHe] = 0

E The common spectrum of L and A is related to a
complex curve X

¥ The moduli of £ are the integrals of motion

E The Baker-Akhiezer funtion is a section of 2 bundle
over £ can be explicitly given.



Theta-Function
and Baker-Akhiezer function

i Baker-Akhiezer function is in terms of ratio of
Riemann theta functions

£ Tau function is proportional to the Riemann theta
function

Whitham hierachy

£ Modulation of the solutions for the KdV equation
- Bogolyubov-Whitham averaging method

- Looks similar to the computation of the effective
action in Quantum Field Theory

- Divide the variables into fast (massive) and slow
(massless) modes and average over the fast
variables.

- Effective action for the light modes
= Geometric formulation by Kriechever



Superpotential from
Integrable Model

E Use elliptic Calogero-Moser model (Weirstrass ft.)
N p2
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£ For each p, identify Conserved Quantity Hp = TrL”
with (Tref)
¥ Deformationof N=4

N
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Futher Developments

E Understanding D=6, (2,0) theories via Matrix Model
in D=2 using Quiver Theory and Deconstruction

£  Uses of Integrable Structure of Matrix Model for the
understanding of SUSY gauge theory
— Hirota's tau function > Prepotential

B Non-planar Diagrams of Matrix Model and
Gravitational Coupling
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