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The role of inflation

)
e Explains Large Scale Homogenity

e A mechanism for generating

e INFLATION =«
density perturbations

o Explanation for nearly flat universe

x What drives inflation = Scalar fields




Classification of scalar field models

e Canonical Scalar Field = L, = 10,¢0"¢ — V(9)

x* V(o) = Voo™ — Chaotic inflation models (Linde 1983)
x V(¢p) = Vyexp [—\/2/p(q5/Mpl)} — Power law inflation a(t) o t?

e Non canonical Scalar Field = L, = L(X,¢) where X = %8M¢0“gb

x L(X,0) = V(o) F(X)

* These class of models are also known as K-inflation models




Aim of this talk

e How good is non canonical inflation in comparison to the canonical

inflation 7

e What class of potentials allows inflation in the non canonical
setting 7

e How can one distinguish non canonical inflation from the canonical

inflation 7




Inflation using canonical scalar fields

Lo = 20,606 — V(9

e Chaotic inflation models (Linde 1983) — V(¢) = Vo™
e Power law inflation a(t) x t? = V(¢) = Vyexp [— \/ 2/P(¢/Mpz)}
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From Komatsu et al (2011)




Inflation using non canonical scalar fields

A specific model

cx.0) = x

where X = %(%gb(’?“gb

e ) is a constant with dimension of mass
e o is the dimensionless parameter of the theory.
e o = 1 corresponds to canonical scalar field.

The above Lagrangian can be viewed as a generalization of the usual
Lagrangian for the canonical scalar field




Slow roll parameters

The slow roll parameters ¢ and ¢ are defined as

J

It follows from the Friedmann equation that

5
aH2:1—5

Therefore, inflation (i > 0) occurs when ¢ < 1 and ends at ¢ =1

EOS parameter w, is related to ¢ as — wy = "¢ — (2—5) —1

Py 3
Slow roll inflation occurs when ¢ <<'1 which gives p, ~ —p,

Slow roll approximation is defined as

e<<1l and |§<<1




Solution in the slow roll limit

The slow roll assumptions (¢ < 1 and |[§| < 1) leads to

1

W(@) o M)}—

7

where
6 = +1 when V'(¢) > 0
6 = —1 when V'(¢) < 0.

e In which regime of the potential V' (¢) is the above solution valid ?




Potential slow roll parameter

e The slow roll condition ¢ < 1 and |§| < 1 implies that

e, <1 and I, K1

() ()™ (Mewioy™} ™
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In the canonical limit

cx.0) =X (1) - Vo)

e o =1 = Canonical Scalar field — L(X,¢) =X — V(¢)

e ¢, and 0, becomes

(Az) (V)




Potentials in the canonical setting

L= 20,00% — V(0

M2 ’ 2
PSR parameter — ¢, = ( QPZ) (“//((;f)))

Slow roll inflation occurs when ¢, << 1 and ends when ¢, ~ 1.

Therefore, for inflation it is required that as the scalar field rolls
down the potential ¢, to evolve from ¢, << 1 to ¢, ~ 1.

For V(¢) =V, ¢" = ¢, « ¢ 2. Therefore, the above criteria is satisfied
only when n > 0.

Consequently, inverse power law potential won’t work in the
canonical framework

Power law inflation — V(¢) =V, exp [-A\(¢/M ,)| = ¢, = const.




Inflationary potentials for non canonical scalars

For our non-canonical model

O

e For 3M* <V = ¢, < egf@

e Inverse power law potential can drive inflation in the non canonical

setting.

e For exponential potential V(¢) =V, exp |—A(¢/M ,)] it turns out that
e, evolves from ¢, <<1to e, ~ 1.

= Non-Canonical scalar fields widens the domain of potentials which

can drive inflation.




Power spectra for non canonical model

e For the model

£(X,4)= X (;}L)l V(9

in the slow roll limit it turns out that

0= () {5) (i) (¥

Pl = <327T‘g§\q4521 )

1

e o > 1 ensures that cz <1




Scalar spectral index and T-to-S ratio

e Scalar spectral index n  is defined as

1= dInP,
~ dnk

e Tensor to scalar ratio

Pr

r -
S

e For chaotic inflationary model V(¢) =V,

0

=2 (amis) () )
n,=1-— nd r=
° 2N~ +n 20— 1 2Ny +n

where

¢", it turns out that

20+ n (a—1)
20 — 1

~

* This result was also independently obtained by Sheng and Liddle (arXiv:1204.6214) !




Scalar spectral index n,

£(X,4) = X (;}1)&_1 - V(9)

V($) = (MF/2)¢*
V($) = (A/Bg*

e The value of n_ for m?¢? potential is independent of o !




Tensor-to-Scalar ratio r

V($) = (MF/2)¢*
V() = (A4

e Tensor-to-scalar ratio decreases as the parameter « is increased.
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Inflationary consistency relation

e For canonical scalar field

where

e For the model

cx0) =X (1) - Vo)

It turns out that
81,

V2o — 1

= =

e Fora>1=r<—-8n,

= Non-canonical scalar fields violates the standard consistency relation




Summary and Conclusions

We considered a non-canonical model of inflation with

£o=(30000) ~ V(&)

The tensor-to-scalar ratio decreases considerably as the parameter o
is increased.

Therefore non-canonical scalars can accommodate a wider class of
potentials for driving inflation.

The non-canonical version of V(¢) ~ A\¢? inflation model, is found to
agree with observations.

This model violates the standard consistency relation r = —8n,,..

When a >> 1, it turns out that f,,, ~0.65 X o = it can lead to large
non-(Gaussianity
= Non-canonical scalars can significantly improve the viability of

inflationary models




AL

[kamsahamnida]




