The Bright Future for Supernova Cosmology

Alex Kim
Lawrence Berkeley National Laboratory

Why Care About SN Cosmology

- Addresses the major puzzle confronting physics today
 - Accelerated expansion of the universe
 - Mysterious "Dark energy" constitutes 73% of the energy of the Universe
- Original discovery of the accelerating universe made with Type Ia SNe

Why Care About SN Cosmology

- Measure of the expansion history of the Universe with SNe la continue to be an important probe of dark energy
- Uniquely measures distances from 0<z<1.5 spanning accelerating and decelerating regimes

Why Care About SN Cosmology

- Major future surveys will provide improved measurements
 - Important contribution when combined with other probes
 - Measured in terms of "Figure of Merit"

From WFIRST Final Report

Standard Candle Flux and the Matter Content

$$f = \frac{L}{4\pi(1+z)^2\chi^2}$$

$$\int_0^{\chi} \frac{dr}{\sqrt{1-kr^2}} = \int_0^z \frac{dz}{H(z)}$$

$$H^2 = H_0^2 \left(\sum_{i \in \text{energy states}} \Omega_i (1+z)^{3(1+w_i)}\right)$$

$$d_L = (1+z)\chi \text{ -Luminosity Distance}$$

$$\mu = 5\log(d_L/10\text{pc}) \text{ -Distance Modulus}$$

Energy State	Matter (CDM, Baryons)	Radiation (γ, ν)	Cosmological Constant Λ	"Dark Energy"	Curvature
W =p/ρ	0	1/3	- l	w(a) modeled as: constant w<-1/3 w=w ₀ +w _a (1-a)	-1/3

Supernovae Almost But Not Perfect Standard Candles

- Heterogeneity in supernova brightnesses and light curve shapes
- After correction for foreground dust supernovae have peak-magnitude dispersion of ~0.3 mag
- We can determine luminosity per object
- After correction for lightcurve shape supernovae become "calibrated" candles with ~0.15 mag dispersion

Estimating the Luminosity of the Standard Candle

- Supernova luminosities determined from fits of multi-band light curves
 - Depends on magnitude at peak brightness, light-curve decline rate, and color

SNe Ia Work Well With Other Cosmological Probes

- SNe Ia with BAO and CMB
 - Tighten dark energy equation of state measurement

Probe time evolution of the equation of state

Room For Improvement

 Expand the redshift range to provide leverage for testing dark energy models

 Decrease systematic uncertainty: within the current redshift range the uncertainty contours are systematics dominated

Description	Ω_m	w	Rel, Area a
Stat only	$0.19^{+0.08}_{-0.10}$	$-0.90^{+0.16}_{-0.20}$	1
All systematics	0.18 ± 0.10	$-0.91^{+0.17}_{-0.24}$	1.85

Conley et al. (2011)

Ongoing/Upcoming SN Surveys

- Better experiments
 - High-quality
 photometry and
 spectroscopy with
 broad wavelength
 coverage

- SkyMapper, LaSilla-Quest, PTF, SNFactory
- High-redshift
 - Dark Energy Survey,
 Large Synoptic Survey
 Telescope, KDUST,
 HST, WFIRST, Euclid

Estimating the Luminosity of the Standard Candle

- Supernova distances determined from fits of multi-band light curves
 - Depends on magnitude at peak brightness, light-curve decline rate, and color

Estimating the Luminosity of the Standard Candle

• Supernova distances determined from fits of multi-band light curves

Depends on magnitude at peak brightness, light-curve decline rate, and

color Luminosity Luminosity SALT2 SNLS-04D3fk **SIFTO** Luminosity **SNooPy** Luminosity 3150 JD 2450000+ BayeSN Luminosity

Our Ignorance of Supernovae: Systematic

- Bulk of high-quality SN measurements in optical wavelengths and near peak
 - SNe less well understood in UV and NIR, well before and well after peak brightness
- Issue manifest in discrepancy of distances from different light-curve fitters
 - Inconsistent U-band templates
 - Different interpretation of color
 - Different priors

Host Galaxy Systematics

- Residuals in the supernova Hubble Diagram correlated with host-galaxy properties
- Supernova light-curve fitters do not fully capture supernova heterogeneity

Dots

- Dots
- Connect the dots

- Dots
- Connect the dots
- Fuzzy non-linear regression

Dots in SN Cosmology

Photometry to light-curve parameters

Light-curve parameters to absolute magnitude

- Fit data to models with a few parameters
 - Photometry to light-curve model (e.g. SALT2, MLCS)
 - Light-curve parameters to linear or quadratic absolute magnitude model
 - Hubble diagram to dark energy model

Hubble diagram to cosmological parameters

Dots in SN Cosmology

Photometry to light-curve parameters

Light-curve parameters to absolute magnitude

- Regression gives model independent way to give more numbers to characterize data
 - More light-curve parameters to correlate with absolute magnitude
 - Non-linear relation between light-curve parameters and absolute magnitude
 - Kinematic measurement of H (Shafieloo, Kim, Linder 2012)

Hubble diagram to cosmological parameters

Gaussian Process

No Observations

No iseless
Observations

Noisy Observations

Gaussian Process

Gaussian Process

Gaussian Process Regression

A Gaussian process is notated as Modeled through parameterized mean and kernel

$$f(\mathbf{x}) \sim GP(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')).$$
 (1)

For a set of input points X_{\star} , the values of the function are drawn from a $\mathbf{f}_{\star} \sim \mathcal{N}\left(m(X_{\star}), K(X_{\star}, X_{\star})\right), \qquad \text{Values from a normal distribution}$ Normal distribution

$$\mathbf{f}_{\star} \sim \mathcal{N}\left(m(X_{\star}), K(X_{\star}, X_{\star})\right),$$
 (2)

where the covariance matrix K has elements filled with all input pairs of $k(\mathbf{x}_{\star,i},\mathbf{x}_{\star,j})$.

The likelihood that \mathbf{y} , a set of n measurements of f at inputs X, with measurement covariance V is written as

measurement covariance
$$V$$
 is written as
$$\log p(\mathbf{y}|X) = -\frac{1}{2}(\mathbf{y} - m(X))^T (K + V)^{-1} (\mathbf{y} - m(X)) - \frac{1}{2}\log|K + V| - \frac{n}{2}\log 2\pi.$$
(3)

A set of measurements and function values is drawn from a Normal distribution Data and regressed values from a normal distribution

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_{\star}) \end{bmatrix}, \begin{bmatrix} K(X,X) + V & K(X,X_{\star}) \\ K(X_{\star},X) & K(X_{\star},X_{\star}) \end{bmatrix} \right). \tag{4}$$

The conditional distribution of the function values is Gaussian with expected mean

$$\bar{\mathbf{f}}_{\star} = m(X) + K(X_{\star}, X) \left[K(X, X) + V \right]^{-1} \left(\mathbf{y} - m(X) \right) \tag{5}$$

and covariance Regressed value PDF mean & covariance after marginalizing over data

$$\operatorname{cov}\left(\overline{\mathbf{f}}_{\star}\right) = K(X_{\star}, X_{\star}) - K(X_{\star}, X) \left[K(X, X) + V\right]^{-1} K(X, X_{\star}). \tag{6}$$

The Dots: Nearby Supernova Factory Data

- >200 SNe Ia, I 20 used in this analysis
- Spectrophotometric time series blueshifted and fluxnormalized to be at a common distance
 - <z>~0.05 in linear Hubble flow
- Synthetic photometry in 4 different blueshifted DES griz filter sets
 - Supernova-frame fluxes of a high-z SN observed with DES griz

- Blueshifted z=0, gri
- Blueshifted z=0.25, griz
- Blueshifted z=0.5, riz
- Blueshifted z=0.75, riz

Light Curve Modeled as a GP and Regressed

- Light curves m(band, phase) modeled as a GP
- Best-fit GP model used to regress light curves in each band from
 10 to 35 days after peak in I-day intervals

Absolute Magnitude Modeled as a GP Function of Light Curve Shape and Color

- Absolute magnitude at B-peak as a function of light-curve parameters M({x(i)}) modeled as a different GP
- Best-fit GP model used to regress absolute magnitudes

Accuracy of Absolute Magnitude Calibration

Observed Dispersion	0.236 mag
Dispersion Around Predictions	0.100±0.009 mag
Intrinsic Dispersion	0.061±0.014 mag

Comparison with Mandel et al. (2011)

	This Work	Mandel Optical	Mandel Optical + NIR
Apparent Error	0.026	0.14	0.10
Bootstrap	0.135	0.15	0.15
.632 Estimator	0.085	0.16	0.11
Intrinsic Dispersion	0.06	0.13	0.08

Hubble Residuals vs Host-Galaxy Properties

Childress et al. (in prep) Kim et al. (in prep)

	$\log{(M/M_{\odot})}$		$\log{(sSFR)}$		$12 + \log{(O/H)}$	
Method	offset $ (mag)$	slope (mag dex^{-1})	$\begin{array}{c} \text{offset} \\ \text{(mag)} \end{array}$	slope (mag dex^{-1})	offset $ (mag)$	slope (mag dex^{-1})
GP cut SALT2 all	-0.003 ± 0.031 0.086 ± 0.028	-0.003 ± 0.016 -0.043 ± 0.014	0.019 ± 0.033 -0.050 ± 0.029	-0.008 ± 0.023 0.030 ± 0.017	-0.005 ± 0.039 0.100 ± 0.036	0.017 ± 0.051 -0.106 ± 0.044

Regressing Spectral Time Series

- SNfactory data does not have uniform data coverage
- Gaussian process used to interpolate spectra in time

Compare Time Series of Different Supernova

- SNe la exhibit heterogeneity in their spectra
- Regress to put different SNe on a common time grid
- Compare similarity of spectral time series

Expect twin supernovae to have the same luminosity

Standard Cosmology and the Accelerating Universe

$$\eta = \int \frac{dt}{a}$$

$$ds^2 = a^2(t)(-d\eta^2 + dr^2 + r^2 d\Omega)$$

$$d_L(a) = a^{-1}\eta(a)$$

$$H^{-1}(z) \equiv \left(\frac{\dot{a}}{a}\right)^{-1} = \frac{d\eta}{dz}$$

$$q(z) \equiv -\frac{\ddot{a}a}{\dot{a}^2} = -\frac{1+z}{H^{-1}}\frac{dH^{-1}}{dz} - 1$$

Conformal time

Flat universe metric

Luminosity distance

Hubble parameter

Deceleration parameter

Standard Cosmology and the Accelerating Universe

$$\eta = \int \frac{dt}{a}$$

$$ds^2 = a^2(t)(-d\eta^2 + dr^2 + r^2 d\Omega)$$

$$d_L(a) = a^{-1}\eta(a)$$

$$H^{-1}(z) \equiv \left(\frac{\dot{a}}{a}\right)^{-1} = \frac{d\eta}{dz}$$

$$q(z) \equiv -\frac{\ddot{a}a}{\dot{a}^2} = -\frac{1+z}{H^{-1}}\frac{dH^{-1}}{dz} - 1$$

Conformal time

Flat universe metric Luminosity distance

Hubble parameter

Deceleration parameter

Adding General Relativity gives a dynamic inference of an accelerating universe

$$H^{2}(z) = \Omega_{M}(1+z)^{3} + \Omega_{\Lambda}$$
$$q_{0} \equiv q(0) = \frac{\Omega_{M}}{2} - \Omega_{\Lambda} = -0.59$$

Standard Cosmology and the Accelerating Universe

$$\eta = \int \frac{dt}{a}$$

$$ds^2 = a^2(t)(-d\eta^2 + dr^2 + r^2d\Omega)$$

$$d_L(a) = a^{-1}\eta(a)$$

$$H^{-1}(z) \equiv \left(\frac{\dot{a}}{a}\right)^{-1} = \frac{d\eta}{dz}$$

$$q(z) \equiv -\frac{\ddot{a}a}{\dot{a}^2} = -\frac{1+z}{H^{-1}}\frac{dH^{-1}}{dz} - 1$$

Conformal time

Flat universe metric

Luminosity distance

Hubble parameter

Deceleration parameter

Can we use supernova data directly to measure deceleration kinematically?

Gaussian Process Regression of Derivatives

 Gaussian process provides a mechanism for regressing derivatives from data

The data can be thought to come from a function that is modeled as Gaussian process, notated as

$$f(\mathbf{x}) \sim GP(m_f(\mathbf{x}), k_f(\mathbf{x}, \mathbf{x}')).$$
 (1)

A set of measurements, function values, and function derivative values is drawn from a Normal distribution

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f'}_{\star} \\ \mathbf{f''}_{\star} \end{bmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{bmatrix} m_f(X) \\ m'_f(X_{\star}) \\ m''_f(X_{\star}) \end{bmatrix}, \begin{bmatrix} \Sigma_{00}(X, X) + V & \Sigma_{01}(X, X_{\star}) & \Sigma_{02}(X, X_{\star}) \\ \Sigma_{10}(X_{\star}, X) & \Sigma_{11}(X_{\star}, X_{\star}) & \Sigma_{12}(X_{\star}, X_{\star}) \\ \Sigma_{20}(X_{\star}, X) & \Sigma_{21}(X_{\star}, X_{\star}) & \Sigma_{2}(X_{\star}, X_{\star}) \end{bmatrix} \end{pmatrix},$$
where
$$\Sigma_{\alpha\beta} = \frac{\partial^{(\alpha+\beta)} k_f}{\partial x^{\alpha} \partial x'^{\beta}}.$$
(3)

Data, regressed derivative values from a normal distribution

Accelerating Universe

- ullet Assume the covariance in Δz is greater than data sampling
- Union2 supernova dataset

Conclusions

- Type Ia Supernovae are and will remain a leading probe of dark energy
- Many upcoming experiments
- Limiting uncertainties are reduced with better experiments and analysis
- Important discoveries can be made with the humble Gaussian Distribution

Conclusions

- Type Ia Supernovae are and will remain a leading probe of dark energy
- Many upcoming experiments
- Limiting uncertainties are reduced with better experiments and analysis
- Important discoveries can be made with the humble Gaussian Distribution

