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Plan of this talk

RegPT: new scheme of perturbation theory

Application & Extension

Summary

New development of cosmological tool to accurately compute 
power spectrum/correlation function of large-scale structure 

Motivation



Motivation

New methodology & technique with clustering anisotropies: 

Precision studies of Large-scale structure (LSS) 
in the era of precision cosmology

Alcock-Paczynski effect

Redshift-space distortion (RSD) effect{ cosmic expansion

growth of structure

DA(z), H(z)

Nature of dark energy / cosmological test of gravity

Upcoming surveys can make a percent-level measurement:
need for a high-precision theoretical template 

Can we really achieve percent-level accuracy ?Q

With baryon acoustic oscillation (BAO) as standard ruler,

f(z) =
d lnD+

d ln a



Regime of our interest

0.05< k < 0.4 h/Mpc

weakly non-linear regime of gravitational clustering

Perturbation theory (PT) is a promising tool
as alternative to N-body-based treatments

Linearly extrapolated

Fully Nonlinear

Linear

z=0.5

1
2

3
Weakly 

nonlinear

For BAO & RSD
 measurements, 

30 < r < 120 Mpc/h

or

Especially around z~1 



Perturbation theory: quick review
Theory of large-scale structure based on gravitational instability

Cold dark matter + baryons = pressureless & irrotational fluid

Basic eqs. 
(GR w/o ν)

� = �(1) + �(2) + �(3) + · · · ��(k; t)�(k�; t)� = (2�)3 �D(k + k�) P (|k|; t)

standard PT 
|�|� 1

Juszkiewicz (’81), Vishniac (’83), Goroff et al. (’86), 
Suto & Sasaki (’91), Jain & Bertschinger (’94), ...



Perturbation theory: quick review
Theory of large-scale structure based on gravitational instability

Cold dark matter + baryons = pressureless & irrotational fluid

Basic eqs. 
(GR w/o ν)

� = �(1) + �(2) + �(3) + · · · ��(k; t)�(k�; t)� = (2�)3 �D(k + k�) P (|k|; t)

standard PT 
|�|� 1
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in Fourier space
Doublet �a(k; �) =

�m(k; �)

��(k; �)/f(�)( (
�

��
�a(k; �) + �ab(�)�b(k; �)

=
�

d3k1d3k2

(2�)3
�D(k � k1 � k2) �abc(k1,k2) �b(k1; �)�c(k2; �)

� � ln D+(t) f =
d lnD+

d ln a

Linear 
growth factor

Modern description

�(n)
a (k; �) = en �

�
d3k1 · · · d3kn

(2�)3(n�1)
�D(k � k12···n) F (n)

a (k1, · · · ,kn)
��0(k1) · · · �0(kn)

n-th order solution symmetric PT kernel



Perturbation theory : revolution
Standard PT turns out to have a poor convergence

Good convergence of improved PT is ensured by re-organizing 
standard PT expansion by means of non-perturbative quantities

Improved PT (’06~’08)

AT et al. (’09)

LRT Matsubara (‘08ab),  Okamura et al. (’11)

Closure theory AT & Hiramatsu (‘08)

Γ-expansion Bernardeau et al. (’08,’12)

Time-RG Pietroni (’08)

RPT Crocce & Scoccimarro (‘06ab, ’08)

Valageas (’07)Large-N



Improved PT in 2nd generation

MPTbreeze

iPT

WH expansion

CLPT

(Crocce et al. '12)

(Sugiyama & Futamase '12)

(Matsubara '11)

(Carlson et al. '12)

Implementing more sophisticated treatment or technique,
applicable range becomes wider, or calculation becomes faster

RegPT (AT et al. '12)



In this talk,

RegPT

by means of multi-point propagator expansion
Regularized perturbation theory

(Γ expansion)

and is straightforward for the higher-order statistics

A construction of PT expansion is easy for power spectrum, 

(bispectrum, trispectrum, ...)



Γ-expansion

• A non-perturbative PT expansion formulated by 
Bernardeau, Crocce & Scoccimarro ('08)

• Standard PT expansion is re-organized by multi-point propagators

2

Note that the formal solution of Φa can be obtained from Eq. (2) and is expressed as (e.g., [2, 3])

Ψa(k; η) = gab(η, η0) φb(k) +
∫ η

η0

dη′gab(η, η′)
∫

d3k1 d3k2

(2π)3
δD(k − k1 − k2) γbcd(k1, k2)Ψc(k1; η′)Ψd(k2; η′). (5)

Here, the quantity φa(k) ≡ Ψa(k, η0) denotes the initial condition, and the quantity gab denotes the linear propagator
satisfying the following equation:

[
δab

∂

∂η
+ Ωab(η)

]
gbc(η, η′) = 0, (6)

with the boundary condition gab(η, η) = δab. The statistical properties of the field Ψa is encoded in the initial field
φa, for which we assume Gaussian statistics. The power spectrum of φa is defined as

〈φa(k)φb(k′)〉 = (2π)3 δD(k + k′)Pab(k). (7)

In what follows, we neglect the decaying modes of linear perturbation, and assumed that only the growing mode is
survived. This implies that the field φa(k) is factorized as φa(k) = δ0(k)ua with ua = (1, 1), and thus the power
spectrum is simply reduced to Pab(k) = P0(k)uaub.

Eq. (2) or (5) is the building block of large-scale structure, and the three quantities γabc, gab and P0uaub introduced
here constitute the basic pieces of standard PT.

B. Γ expansion

〈
Φa(k; η)Φb(k′; η)

〉
= (2π)3 δD(k + k′)Pab(|k|; η) (8)

Ψ(n)
a (k; η) =

∫
d3k1 · · · d3kn

(2π)3(n−1)
Fab1b2···bn(k1, · · · , kn; η)Ψb1(k1) · · ·Ψbn(kn). (9)

1
p!

〈
δpΨa(k, η)

δφc1(k1) · · · δφcp(kp)

〉
= δD(k − k1···p)

1
(2π)3(p−1)

Γ(p)
ac1···cp(k1, · · · , kp; η) (10)

Pab(|k|; η) =
∑

t!
∫

d3q1 · · · d3qt

(2π)3(t−1)
δ(k − q1···t)Γ

(t)
a (q1, · · · , qt; η)Γ(t)

b (q1, · · · , qt; η)P0(q1) · · ·P0(qt) (11)

Γ(t)
a (q1, · · · , qt; η) = Γ(t)

ac1···ct(q1, · · · , qt; η)uc1 · · ·uct (12)

For the matter power spectrum, P (k; η) = P11(k; η),

P (k; η) =
[
Γ(1)(k; η)

]2
P0(k) + 2

∫
d3q

(2π)3
[
Γ(2)(q,k − q; η)

]2
P0(q)P0(|k − q|)

+ 6
∫

d6pd3q

(2π)6
[
Γ(3)(p, q, k − p − q; η)

]2
P0(p)P0(q)P0(|k − p − q|) (13)

with Γ(p) = Γ(p)
1 .
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� �m(k; �)

� �0(k1) · · · � �0(kn)

�
= (2�)3(1�n)�D(k � k12···n) �(n)(k1, · · · ,kn; �)

multi-point correlations btw. initial (    ) & evolved density fields (     )�m�0

Power spectrum at 2-loop level

(n+1)-point 
propagator

initial P(k)P0(k) :
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� �m(k; �)

� �0(k1) · · · � �0(kn)

�
= (2�)3(1�n)�D(k � k12···n) �(n)(k1, · · · ,kn; �)

multi-point correlations btw. initial (    ) & evolved density fields (     )�m�0

Power spectrum at 2-loop level

(n+1)-point 
propagator

initial P(k)P0(k) :Diagrammatic representation for P(k) in RegPT

P(k)
= + 6+ 2 + ...

initial P(k)

k -k k -k k -k k -k

q -q

k-q -(k-q)

q -q

k-p-q -(k-p-q)

p -p

e.g., 5-pt propagator

k

k1

k2

k3

k4

�(4)(k1, · · · , k4; �)



Standard PT vs. Γ-expansion
Standard PT

Linear (tree) 1-loop 2-loop
P (k) = P (11)(k) +

�
P (22)(k) + P (13)(k)

�
+

�
P (33)(k) + P (24)(k) + P (15)(k)

�
+ · · ·

P (mn) � ��(m)�(n)�

multi-point 
propagator k

k1

kn

RegPT (Γ-expansion)

P(k)
= + 6+ 2 + ...

initial P(k)

k -k k -k k -k k -k

q -q

k-q -(k-q)

q -q

k-p-q -(k-p-q)

p -p



Bispectrum in Γ-expansion
Bernardeau et al. (’09)

=B(k1, k2, k3) 2 + 8 + 6 + cyc.

k2

k1k3

k2

k1k3

k2

k1k3

up to 1-loop order

summation over possible 
combinations of Γ



Multi-point propagator

• UV property (k >>1) is analytically known :

A crucial point in Γ-expansion is how to construct ‘approximate’ multi-
point propagators without loosing their non-perturbative properties  

• IR behavior (k<<1) can be described by standard PT calculations :

Bernardeau, Crocce & Scoccimarro (’08), Bernardeau, Van de Rijt, Vernizzi (’11)

�(n) = �(n)
tree + �(n)

1-loop + �(n)
2-loop + · · ·

�(n)
p-loop �� 1

p!

�
�k2 �2

v

2

�p

�(n)
tree

k � +�
In UV limit, each term behaves like

k � +�
�(n) �� �(n)

tree e�k2�2
v/2 ; �2

v =
�

dq

6�2
P��(q)

A regularization scheme that reproduces both UV & IR behaviors
Bernardeau, Crocce & Scoccimarro (’12)



Propagators in N-body simulations

�(1)(k)

Bernardeau et al. (’12)

predictions up to 
2-loop order

predictions up to 
1-loop order�(2)(k1, k2, k3)

Bernardeau, AT & Nishimichi (in prep.)

Equilateral Collinear

ElongatedAlmost squeezed

solid: 1-loop 
dashed: tree

compared with 'Regularized' propagators constructed analytically



Comparison with simulations

AT, Bernardeau, Nishimichi, Codis ('12)

Power spectrum

Correlation function

Lbox = 2, 048 h�1 Mpc
# of particles：1, 0243

# of runs：
cosmology：wmap5

60

Plugging all the ingredients 
into 2-loop expressions of P(k) & ξ(r), 



Application & Extension

• Accelerated calculation method

• Predictions in redshift space

RegPT-fast

s-RegPT

Dramatically fast calculation is possible, suitable for a 
practical cosmological parameter estimation

5-10min. few sec.

With the improved model of RSD,  a consistent calculation  
is made possible, capturing the non-Gaussian nature of RSD

AT, Bernardeau, Nishimichi & Codis (’12)

AT, Bernardeau & Nishimichi (in prep.)



RegPT-fast
Drawback in most of PT methods with higher-order corrections (i.e., 
2-loop) is the time-consuming multi-dimensional integrals.

Basic idea Expand PT expressions around a fiducial model

PNL(k) = F [Plin; k]

fiducial model
(with arbitrary normalization) departure from fiducial model

• Adjusting ‘α’, normalization is chosen so as to 
minimize the difference between target and fiducial models

• Given Plin(k) for target model, the task is to evaluate the residuals
 which is nothing but 1D integrals.

= F [� P0; k] +
�

dq
�F [� P0; q]
� (� P0(q))

{Plin(q)� � P0(q)} + · · ·

just 1D integral !



Demonstration

�m = 0.234 �m = 0.279

�b/�m = 0.175 �b/�m = 0.165
�8 = 0.76 �8 = 0.817

�� = 0.766 �� = 0.721

Fiducial (wmap3) Target (wmap5)

Fiducial
wmap3 cosmological model

Target (N-body)
wmap5 cosmological model 

P (k) �� Pun-pert[k, z;P0,fid] + Pcorr[k, z; �P0]

P (k) �� Pun-pert[k, z;P0,fid] + Pcorr[k, z; �P0]

AT, Bernardeau, Nishimichi, Codis (12)



RegPT: public PT code

http://www-utap.phys.s.u-tokyo.ac.jp/~ataruya/regpt_code.html

Generic PT code based on Gamma expansion

• Power spectrum & correlation function in real space

• Many options (direct-/fast-mode,  1-loop/2-loop calculations, 
other PT methods)

• Code provides data sets of 3 fiducial models for fast computation, 
which are automatically selected



From real to redshift space

Due to the non-linear mapping, however, the resultant power 
spectrum in redshift space is rather complicated 

• not simple two-point statistics

P (S)(k) =
�

d3x eik·x
�
e�ikµf�uz {�(r) + f�zuz(r)} {�(r�) + f�zuz(r�)}

�

redshift 
space

real space

�s = �r +
1 + z

H(z)
(�v · ẑ) ẑ � �r � f uz(�r) ẑ

x � r� r�

�uz � uz(r)� uz(r�)

Prediction in redshift space needs one more further step

RSD effects can be described by the simple prescription:

• exhibit non-Gaussian nature



Semi-analytic model of RSD

P (S)(k, µ) = e�(kµf⇤v)2
�
P��(k)� 2fµ2P�⇥(k) + f2µ4P⇥⇥(k)+A(k, µ) + B(k, µ)

�
P (S)(k, µ) = e�(kµf⇤v)2

�
P��(k)� 2fµ2P�⇥(k) + f2µ4P⇥⇥(k)

Fitting parameter

• Model accounts for a large-scale enhancement in halo clustering

• Popular streaming model ＋ (non-)Gaussian corrections

Previous studies adopted standard PT treatment to compute corrections

+

3

Note that in Ref. [1], the term D turns out to be higher-order in standard PT expansion, and dropped it throughout
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In deriving the expression (1.10), while we employed the low-k expansion, we do not assume that the terms Ai

themselves are entirely small. In this sense, the expressions (1.10), (1.11), (1.12) and (1.13) still have some non-
perturbative properties, although the new corrections A and B, and D neglected in the previous phenomenological
models are expected to be small, and can be treated perturbatively.

Note that the A and B terms basically give the positive contributuions, and moderately but notably affect the shape
and structure of BAOs. In particular, as revealed by Ref. [4], the A term exhibits a strong bias dependence, leading
to a large-scale enhancement in amplitude relative to the real-space clustering. The effect is especially prominent for
massive halos or highly biased objects, and in the presence of A and B terms, the model (1.10) indeed reproduces the
halo redshift-space clustering quite well.
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To compute the redshift-space power spectrum in Eq. (1.10), we need to evaluate not only the auto- and cross-power
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Note also that the original TNS model has been derived based on the low-k expansion, and A and B terms are
the first non-vanishing leading-order corrections. The D term has been ignored in the previous paper [1], because the
resultant PT order is higher than those of the A and B terms. Nevertheless, including the corrections at two-loop
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for a consistent calculation, we need to take into account of the D term.

In this section, we give explicit expressions for next-to-leading order correction in A term, and leading-order for D
term.

A. A term from RegPT

For later convenience, we first write the bispectrum Bσ in terms of the conventional definition of the bispectrum,
Babc. Then, we get the simplified expression for Bσ, in which the integral is partly performed in analytic way.
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FIG. 1: Ratio of power spectra to smoothed reference spectra in redshift space, P (S)
! (k)/P (S)

!,no-wiggle(k). N-body results are

taken from the wmap5 simulations of Taruya, Berardeau, Nishimichi & Codis (2012). The reference spectrum P (S)
!,no-wiggle is

calculated from the no-wiggle approximation of the linear transfer function with the linear theory of the Kaiser effect taken into
account. Long-dashed and solid lines respectively indicate the results based on the RegPT calculations at one- and two-loop
orders.

FIG. 2: Fitted values of σv as function redhift.

C. Correlation function

Next consider the correlation function. Fig. 3 plots the correlation functions, particularly focusing on baryon
acoustic peak. Left, middle and right panels respectively shows the results of monopole, quadrupole, and hexadecapole
correlation functions. The predictions depicted as solid and dashed lines are basically obtained from the power spectra
through the relation:

ξ(S)
! (s) = i!

∫
dk k2

2π2
P (S)

! (k) j!(ks) (25)

Note that we adopt the same velocity dispersion σv as determined in the power spectrum analysis. At all redshifts,
the one- and two-loop results do indeed agree with N -body results quite well. This is contrasted with the previous

k_max, below which percent-level 
accuracy is achieved in real space

Monopole Quadrupole
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z=2

z=1

z=0.35

z=3

z=2

z=1

z=0.35

AT, Bernardeau & Nishimichi (in prep.)
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FIG. 3: Redshift-space correlation functions around baryon acoustic peak. Monopole, quadrupole, and hexadecapole moments
of correlation function are respectively shown in left, middle and right panels.

FIG. 4: Redshift-space correlation functions at small scales. Plotted results are the ratio of correlation function to linear theory
predictions taking account of the linear Kaiser factor, ξ(S)

! (s)/ξ(S)
!,lin(s).

case, in which A and B terms have been evaluated with standard PT, while the power spectra, Pδδ, Pδθ and Pθθ, are
computed with closure theory. Now with the coherent treatment with RegPT, the TNS model successfully describes
the correlation functions around baryon acoustic peak.

In Fig. 4, we also show the correlation functions, but focusing on small scales. The plotted results are the ratio of
correlation function to the linear theory prediction taking account of the linear Kaiser factor, ξ(S)
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the prediction agrees well with simulations up to some scales, s ! 20− 40h−1 Mpc. Of course, as decreasing redshift,
the prediction tends to deviate from N -body result, and discrepancy becomes manifest. A careful comparison between
results in real and redshift spaces reveals that the range of agreement with N -body simulations is even narrower in
redshift space, presumably because the TNS model misses some important non-linear corrections. In particular, the
discrepancy in the result of hexadecapole correlation function is prominent at low redshifts z = 035 and 1. However,
the N -body measurement of correlation function using the grid-based calculation with FFT usually suffers from the
finite number of grids, which may seriously affect the higher-multipole correlation functions. Care must be taken
when we look at the hexadecapole results.
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FIG. 3: Redshift-space correlation functions around baryon acoustic peak. Monopole, quadrupole, and hexadecapole moments
of correlation function are respectively shown in left, middle and right panels.
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discrepancy in the result of hexadecapole correlation function is prominent at low redshifts z = 035 and 1. However,
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Summary
PT for precision calculation of LSS now moves on to the 

2nd stage (practical phase)

•  Fast calculation of power spectrum (in real space)

RegPT : new non-perturbative PT treatment

few sec. on (my) laptop, no parallelization required
code is publicly available at

•  Predictions in redshift space
With the improved model of RSD,  validity range of PT 

prediction remain unchanged in both real and redshift space

based on Gamma expansion

stay tune for public code

http://www-utap.phys.s.u-tokyo.ac.jp/~ataruya/regpt_code.html


