Dynamical model of the Milky Way bar

Yougang Wang

National Astronomical Observatories of China (NAOC)

Collaborators: Hongsheng Zhao (St Andrews), Shude Mao (NAOC) M. Rich (UCLA), Juntai Shen (SHAO), Richard Long (NAOC) and other BRAVA members

The 5th KIAS workshop on Cosmology and Structure Formation 2012/11/1

Outline

- Background
- Schwarzschild's orbit-superposition technique
- Results
- Future studies

Morphological classification of galaxies

Kormendy & Bender 2012

Why do we want to study the bar region

- Bar is main driver for the secular evolution of disc galaxies
- Pushes mass from the bar region to the center where it creates a a central mass concentration
- Drives the angular momentum exchange within a disc galaxy.
- The strength of the bar correlates well with the amount of angular momentum exchanged

(Athanassoula 2003)

Milk Way Galaxy-A typical barred spiral galaxy

Background I: Observations

- The finding of the bar (de Vaucoulerus 1964), 21-cm observations
- A clear detection of the triaxial bar by Blitz & Spergel (1991) form the infrared balloon observations
- COBE confirms the bar with a bar angle ~20° (Weiland 1994)
- Recently observations:
 2MASS, OGLE, HST, BRAVA, APOGEE
- Some density models have been constructed by the star counts and surface brightness, also some N-body models

Background II: dynamical model

- Zhao (1996) used the Schwarzschild's method constructed a self-consistent model
- Hafner et al.(2000) proper motion
- Small number of kinematics are used

Four modeling methods

- Schwarzschild's orbit-superposition technique (Schwarzschild 1979)
- Made-to-measure (Syer & Tremaine 1996)
- Torus (McMillan & Binney 2008)
- N-body

First three ones are fixed potential

The aim of our studies

- Using the Schwarzschild's orbitsuperposition technique to construct the self-consistent model of the Galactic bar
- In model constraints, we add the current available data (BRAVA).

Model of the Milky Way

• Bar + bulge $\rho(x, y, z) = \rho_0 \left[\exp\left(-\frac{s_b^2}{2}\right) + s_a^{-1.85} \exp(-s_a) \right]$

- $s_b^4 = \left[\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 \right]^2 + \left(\frac{z}{c} \right)^4,$
- Miyamoto-Nagai disk

$$D^{2} = x^{2} + y^{2} + [a_{\rm MN} + (z^{2} + b_{\rm MN}^{2})^{1/2}]^{2},$$

BRAVA data (Bulge Radial Velocity Assay)

- ~10,000 M stars
- The velocity error is ~5km/s
- The data has been released by http:// brava.astro.ucla.edu /data.htm

Cerro Tololo Inter-American Observatory 4 m Hydra multiobject spectrograph.

Some typical regular orbits

Models with different parameters

model ID	$Ω_p$ (km s ⁻¹ kpc ⁻¹)	(M_{bar})	θ_{bar} (°)	χ^2
	40	0.05	19.4	991
2	40	2.20	20	335
2	40	2.20	20	420
3	40	2.20	12.4	950
1	40	5	10/1	303
6	40		20	499
2	40	0	12.4	900
	40	0	10/1	002
	40		20	842
9	40	•	30	640
10	50	2.25	13.4	363
11	50	2.25	20	340
12	50	2.25	30	272
13	50	5	13.4	297
14	50	5	20	279
15	50	5	30	284
16	50	8	13.4	606
17	50	8	20	633
18	50	8	30	561
10	60	9.95	12.4	45.6
20	60	2.20	20	444
20	60	2.20	20	370
22	60	5	13.4	308
22	60	5	20	203
24	60	5	30	208
25	60	ě.	13.4	403
26	60	8	20	354
27	60	8	30	344
	~			
28	80	2.25	13.4	314
29	80	2.25	20	374
30	80	2.25	30	371
31	80	5	13.4	319
32	80	5	20	398
33	80	5	30	273
34	80	8	13.4	379
35	80	8	20	352
36	80	8	30	467

Self-consistency of the $\Omega_p = -60 km/s/kpc$ model $M_{disk} = 10^{11} M_{sun}$ $\theta_{bar} = 20^{\circ}$

Best-fitting model

 $\Omega_p = -60 \, km \, / \, s / \, kpc$ $M_{disk} = 10^{11} M_{sun}$ $\theta_{bar} = 20^{\circ}$

arXiv:1209.0963, Wang et al. 2012

Proper motion & Stability

Field	(l,b)	σ_l	σ_b	Ref.
	(°)	$(mas yr^{-1})$	$(mas yr^{-1})$	
Baade's Window Baade's Window Baade's Window Baade's Window Baade's Window Baade's Window Baade's Window Plaut's Window Sagittarius's Window Sagittarius's Window Sagittarius's Window	(1,-4) (1,-4) (1.13,-3.77) (1,-4) (0.9,-4) (1,-4) (1.13,-3.76) (0,-8) (1.25,-2.65) (1.27,-2.66) (1.25,-2.65) (1.26,-2.65)	$\begin{array}{c} 3.2\pm0.1\\ 3.14\pm0.11\\ 2.9\\ 2.87\pm0.08\\ 3.06\pm0.11\\ 3.13\pm0.16\\ 3.11\pm0.08\\ 3.39\pm0.11\\ 3.3\\ 3.07\pm0.08\\ 3.067\\ 3.56\pm0.08\end{array}$	$\begin{array}{c} 2.8\pm0.1\\ 2.74\pm0.08\\ 2.5\\ 2.59\pm0.08\\ 2.79\pm0.13\\ 2.50\pm0.10\\ 2.74\pm0.13\\ 2.91\pm0.09\\ 2.7\\ 2.73\pm0.07\\ 2.760\\ 2.87\pm0.08\end{array}$	Spaenhauer et al. (1992) Zhao et al. (1996) Kuijken & Rich (2002) Kozłowski et al. (2006) Soto et al. (2007) Babusiaux et al. (2010) Soto (2012) in preparation Vieira et al. (2007, 2009) Kuijken & Rich (2002) Kozłowski et al. (2006) Clarkson et al. (2008) Soto (2012) in preparation
NGC 6558	(0.28,-6.17)	2.90 ± 0.03 2.90 ± 0.11	2.87 ± 0.08 2.87 ± 0.13	Soto (2012) in preparation Soto (2012) in preparation
Baade's Window Plaut's Window Sagittarius's Window NGC 6558	(1,-4) (0,-8) (1,-3) (0,-6)	4.44 5.28 4.43 4.46	2.52 2.32 2.67 2.36	Model 23 Model 23 Model 23 Model 23

The bar is only stable within 0.5 Gyr

Regular orbit fraction

Orbit integrated time	1/4Hubble time	1/3Hubble time	1/2Hubble time	Hubble time
Regular orbit fraction	19.4%	18.7%	8.8%	7.1%
Irregular orbit fraction	80.6%	81.3%	91.2%	92.9%

Future studies

- Constructing a new density model of the bar and rerun the Schwarzschild's method
- Using the N-body simulation or some toy-models.

Shen 2010's model

Baade's Window	(1,-4)	3.28	2.38
Plaut's Window	(0, -8)	3.35	2.11
Sagittarius I	(1,-3)	3.33	2.47
NGC 6558	(0, -6)	3.26	2.17
Baade's Window	(1,-4)	3.72	2.58
Plaut's Window	(0, -8)	3.36	2.34
Sagittarius I	(1,-3)	3.63	2.58
NGC 6558	(0,-6)	3.52	2.28
Baade's Window	(1,-4)	4.44	2.52
Plaut's Window	(0, -8)	5.28	2.32
Sagittarius I	(1, -3)	4.43	2.67
NGC 6558	(0,-6)	4.46	2.36

Thank you!