On the effects of a hot gas halo in the evolution of isolated galaxy models

Jeong-Sun Hwang (KIAS)

The 5th KIAS Workshop on Cosmology and Structure Formation 2012. Oct. 29 – Nov. 04, Conference Hall (5f) KIAS, Seoul

Background

Some spiral galaxies like our own Milky Way Galaxy possesses hot diffuse gas in the halo.

- 5 components: DM halo, stellar disk, stellar bulge,

gaseous disk and gaseous halo

Basis:

- Observations
- Cosmological hydrodynamic simulations

However,

only a few numerical studies taking account of halo gas in the models have been presented.

Moster et al. (2011) included, for the first time,

a diffuse rotating hot gaseous halo as well as the other four components and performed hydrodynamic simulations of major mergers of disk galaxies.

We also construct galaxy models including a hot gas halo component and study its impact on the galaxy evolution.

Contents

Numerical Codes

- Initial Galaxy Models
- Simulation Results

The Codes

ICs (galaxy models) generated using the ZENO software package (version 008):

- provided by Joshua E. Barnes
- allows one to build multiple components in mutual equilibrium with user-specified density profiles
 in collisionless or gaspous form
 - in collisionless or gaseous form.

Simulations performed using (an early version of) Gagdet3:

- the Tree-SPH code developed by Volker Springel
- includes radiative cooling, star formation, SN feedback,
 - a phenomenological model for galatic winds,
 - and sub-resolution model of multiphase ISM (Springel & Hernquist 2003)

• (Stellar) Bulge

follows a Hernquist (1990) model & tapers at larger radii.

$$\rho_{\rm b}(r) = \begin{cases} \frac{a_{\rm b}m_{\rm b}}{2\pi} \frac{1}{r(a_{\rm b}+r)^3} & \text{for } r \le b_{\rm b} \\ \\ \rho_{\rm b}^* \left(\frac{b_{\rm b}}{r}\right)^2 e^{-2r/b_{\rm b}} & \text{for } r > b_{\rm b} \end{cases}$$

•Star and Gas Disks

have an exponential radial profile & a sech² vertical profile.

$$\rho_{\rm d}(R,z) = \frac{M_{\rm d}}{4\pi a_{\rm d}^2 z_{\rm d}} e^{-R/a_{\rm d}} \operatorname{sech}^2\left(\frac{z}{z_{\rm d}}\right)$$

• DM Halo

follows a Navarro et al. (1996) model & tapers at larger radii.

• Gas Halo

follows either the NFW or a non-singular isothermal profile.

$$\rho_{\rm h}(r) = \begin{cases} \frac{M_{\rm h}(a_{\rm h})}{4\pi(\ln(2) - \frac{1}{2})} \frac{1}{r(r + a_{\rm hc})^2} & \text{for } r \le b_{\rm h} \\ \rho_{\rm h}^* \left(\frac{b_{\rm h}}{r}\right)^2 e^{-2\beta(r/b_{\rm h} - 1)} & \text{for } r > b_{\rm h} \end{cases}$$

$$\rho_{\rm hg}(r) = \frac{f_{\rm norm} M_{\rm hg}}{2\pi\sqrt{\pi} \, b_{\rm hg}} \, \frac{1}{r^2 + a_{\rm hg}^2} \, e^{-(r/b_{\rm hg})^2}$$

Model Parameters

		Model DHi	Model DHi-f5	Model DHn	Model DHn-f5	Model D	Model Hi
Bulge: bulge model a _b [kpc]	Length scale of bulge	Hernquist 0.7	Hernquist 0.7	Hernquist 0.7	Hernquist 0.7	Hernquist 0.7	Hernquist 0.7
$b_{\rm b}$ [kpc]	Radius at which truncation starts	140.0	140.0	140.0	140	140.0	140
$M_{\rm b} \ [10^{10} \ {\rm M}_{\odot}]$	Total mass of bulge	1	1	1	1	1	1
$N_{\rm b}$	Particle numbers in the gas disk	8192	8192	8192	8192	8192	8192
Star disk							
disk model		exponential	exponential	exponential	exponential	exponential	exponential
a_{ds}	Length scale of star disk	3.5	3.5	3.5	3.5	3.5	3.5
$z_{\rm ds}$	Vertical scale height	0.35	0.35	0.35	0.35	0.35	0.35
b_{ds}	Outer disk cutoff radius	42	42	42	42	42	42
$M_{\rm ds}$	Total mass of star disk	4.4	4.4	4.4	4.4	4.4	5.0
$N_{\rm ds}$	Particle numbers in star disk	16384	16384	16384	16384	16384	16384
Gas disk							
disk model		exponential	exponential	exponential	exponential	exponential	
a_{dg}	Length scale of gas disk	8.75	8.75	8.75	8.75	8.75	
z_{dg}	Vertical scale height	0.35	0.35	0.35	0.35	0.35	
b_{dg}	Outer disk cutoff radius	105	105	105	105	105	
$M_{\rm dg}$	Total mass of gas disk	0.6	0.6	0.6	0.6	0.6	
$N_{\rm dg}$	Particle numbers in gas disk	16384	16384	16384	16384	16384	
DM halo:							
halo model		NFW	NFW	NFW	NFW	NFW	NFW
$a_{ m hd}$	Radial scale of DM halo	21	21	21	21	21	21
$b_{ m hd}$	Radius to begin taper	84	84	84	84	84	84
$M_{\rm hd}(a_{\rm hd})$	Mass within radius $a_{\rm h}$	12.23	11.74	12.23	11.74	12.35	12.23
$M_{\rm hd}(\infty) = M_{\rm hd}$	Total mass of DM halo	118.8	114.0	118.8	114.0	120	118.8
$N_{\rm hd}$	Particle numbers in DM halo	163840	163840	163840	163840	163840	163840
Gas halo:							
halo model		isothermal	isothermal	NFW	NFW		isothermal
a_{hg}	Radial scale, or			21	21		
	radius of core	10.5	10.5				10.5
b_{hg}	Radius to begin taper, or			84.0	84.0		
	radius of taper	420	420				420
$M_{\rm hg}(a_{\rm hg})$	Mass within radius a_{hg}			0.12	0.62		
$M_{ m hg}$	Total mass of gas halo	1.2	6.0	1.2	6.0		1.2
$N_{\rm hg}$	Particle numbers in gas halo	32768	163840	32768	163840		32768

Our primary goal:

to study the effects of a hot gaseous halo on galaxy evolution

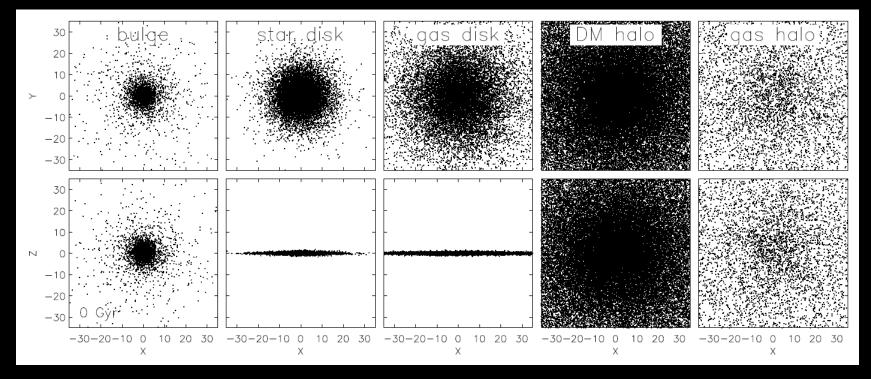
Different types of our models:

• Type DH: 3 collisionless components + gas disk & gas halo

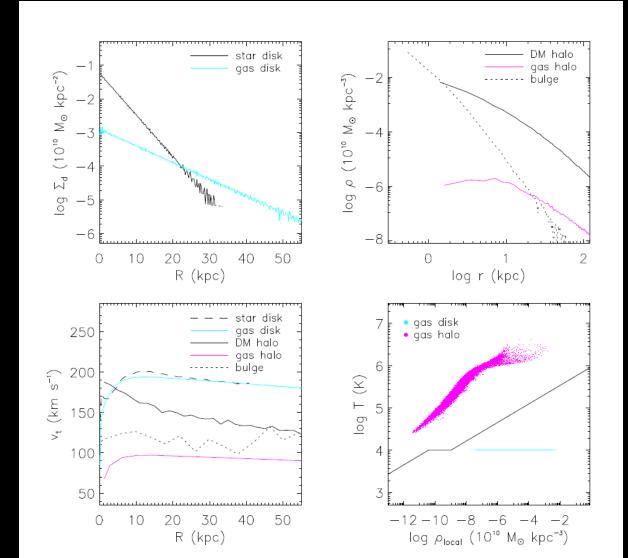
- Type DHi: Isothermal gas halo
- Type DHn: NFW gas halo
- Type D: 3 collisionless components + gas disk
- Type H: 3 collisionless components + gas halo

In all our models:

$$\begin{split} \mathsf{M}_{tot} &= \mathsf{M}_{b} \ + \ \mathsf{M}_{d} \ + \ \mathsf{M}_{h} \ = \ 126 \ X \ 10^{10} \ \mathsf{M}_{\odot} \\ & \mathsf{M}_{b} \ = \ 1 \ X \ 10^{10} \ \mathsf{M}_{\odot} \\ & \mathsf{M}_{d} \ = \ \mathsf{M}_{ds} \ + \ \mathsf{M}_{dg} \ = \ 5 \ X \ 10^{10} \ \mathsf{M}_{\odot} \\ & \mathsf{M}_{h} \ = \ \mathsf{M}_{hd} \ + \ \mathsf{M}_{hg} \ = \ 120 \ X \ 10^{10} \ \mathsf{M}_{\odot} \end{split}$$

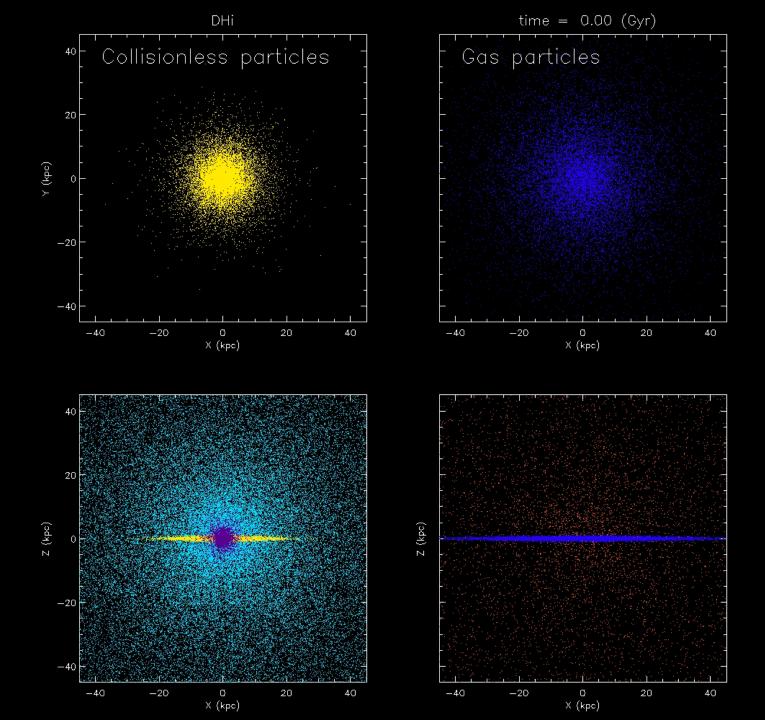

Galaxy Models (w/o winds)

Gas halo model	Gas halo rotation	$f_{ m hg}$	$f_{\rm dg}$
isothermal		0.01	0.12
isothermal		0.05	0.12
isothermal	gas disk rotation $\times 0.5$	0.01	0.12
NFW		0.01	0.12
NFW		0.05	0.12
			0.12
isothermal		0.01	
	isothermal isothermal isothermal NFW NFW 	isothermal isothermal gas disk rotation×0.5 NFW NFW 	isothermal0.01isothermal0.05isothermalgas disk rotation×0.50.01NFW0.05

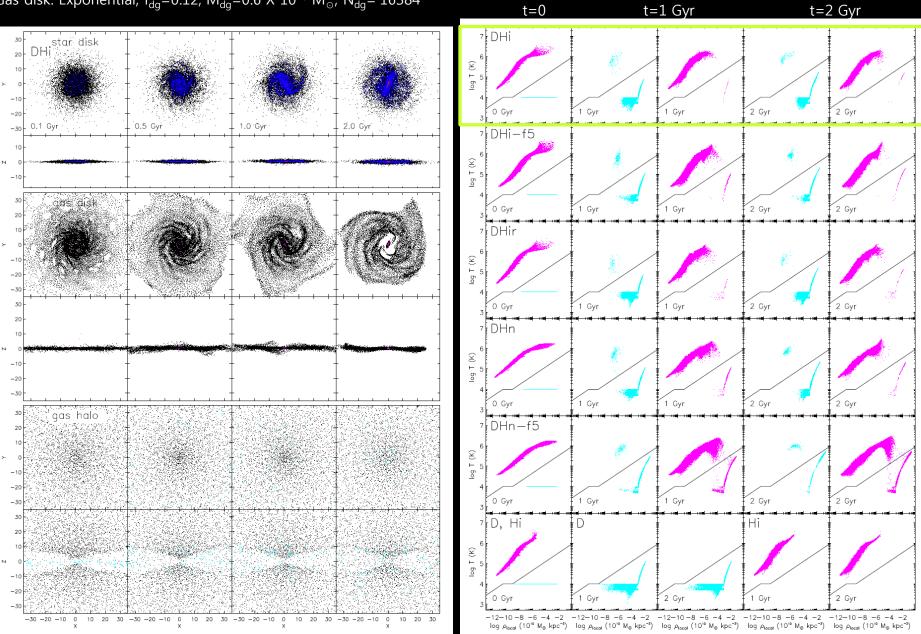

Wind test runs (with winds)

Model	Wind mode	WindEffi	WindFreeTravelLength	WindEnergyFract	WindFreeTrevelDensFac
DHir-Wa	axial	2	20	1	0.1
D-Wa	axial	2	20	1	0.1

Model DHi (& DHir) at t=0

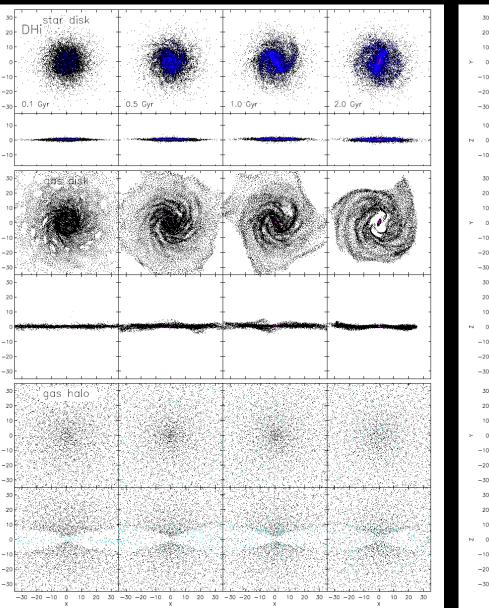


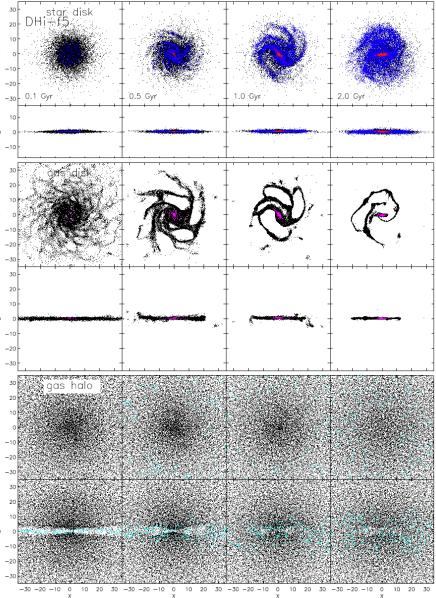
Model DHi (& DHir) at t=0


Evolution:

- 1. DHi
- 2. DHi-f5
- 3. DHir
- 4. DHn
- 5. DHn-f5
- 6. D
- 7. Hi

Gas halo: Isothermal, f_{hg} =0.01, M_{hg} =1.2 X 10¹⁰ M_{\odot} , N_{hg} = 32768 Gas disk: Exponential, f_{dg} =0.12, M_{dg} =0.6 X 10¹⁰ M_{\odot} , N_{dg} = 16384

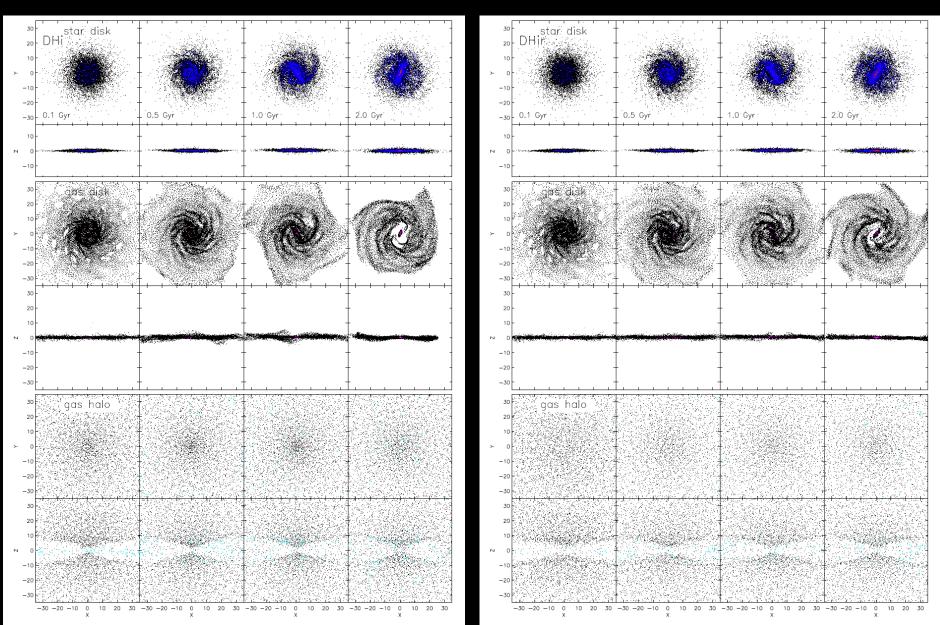

Temperature vs Local Density



2. Model DHi-f5

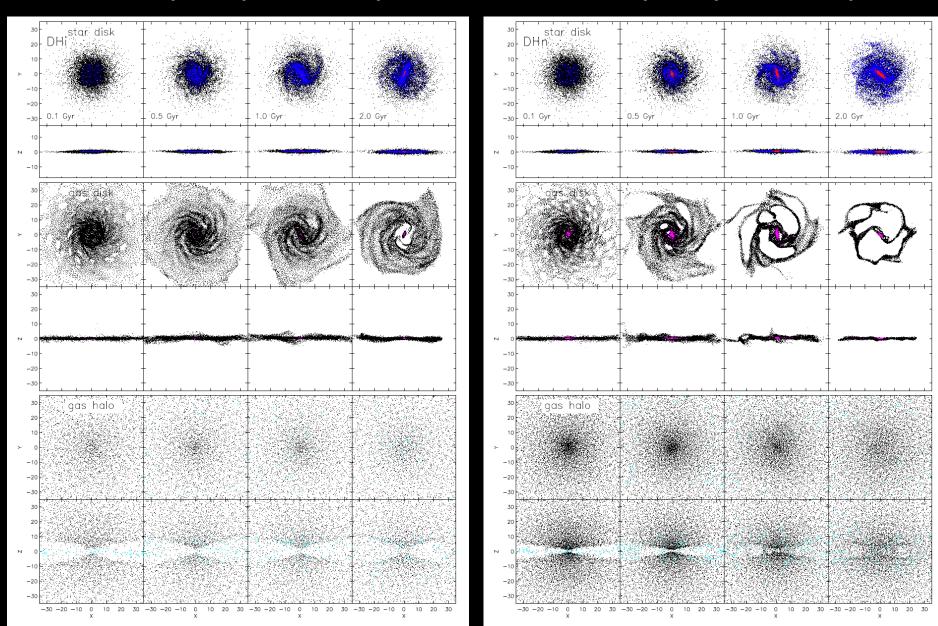
Gas halo: Isothermal, f_{hg} =0.01, M_{hg} =1.2 X 10¹⁰ M_{\odot} , N_{hg} = 32768 Gas disk: Exponential, f_{dg} =0.12, M_{dg} =0.6 X 10¹⁰ M_{\odot} , N_{dg} = 16384

Gas halo: Isothermal, f_{hg} =0.05, M_{hg} =6.0 X 10¹⁰ M_{\odot} , N_{hg} = 163840 Gas disk: Exponential, f_{dg} =0.12, M_{dg} =0.6 X 10¹⁰ M_{\odot} , N_{dg} = 16384



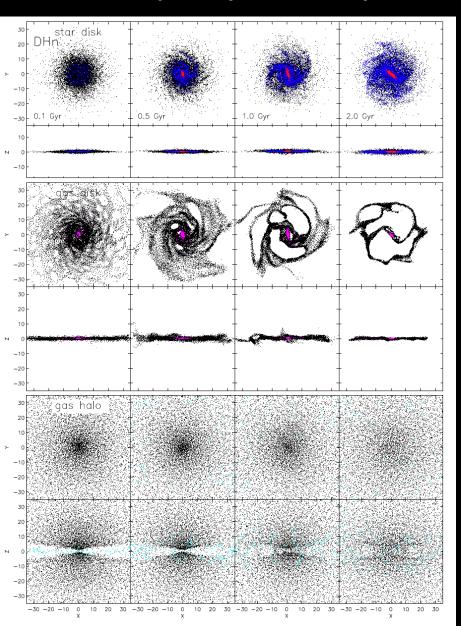
3. Model DHir

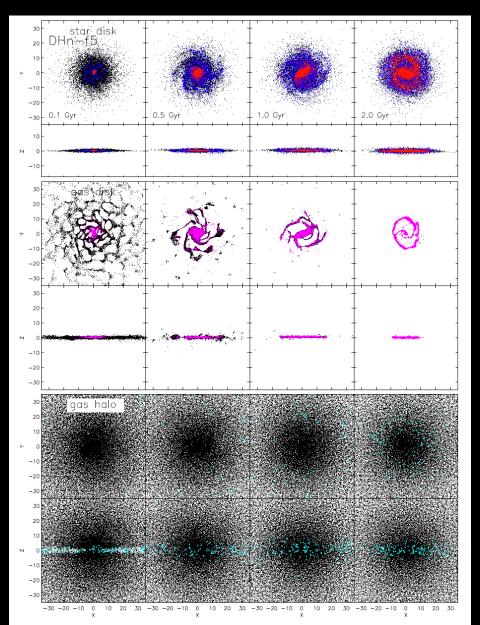
Gas halo: Isothermal, f_{hg} =0.01, M_{hg} =1.2 X 10¹⁰ M_{\odot} , N_{hg} = 32768 Gas disk: Exponential, f_{dg} =0.12, M_{dg} =0.6 X 10¹⁰ M_{\odot} , N_{dg} = 16384


Gas halo: Isothermal+Spin, f_{hg} =0.01, M_{hg} =1.2 X 10¹⁰ M_{\odot} , N_{hg} = 32768 Gas disk: Exponential, f_{dg} =0.12, M_{dg} =0.6 X 10¹⁰ M_{\odot} , N_{dg} = 16384

4. Model DHn

Gas halo: Isothermal, f_{hg} =0.01, M_{hg} =1.2 X 10¹⁰ M_{\odot} , N_{hg} = 32768 Gas disk: Exponential, f_{dg} =0.12, M_{dg} =0.6 X 10¹⁰ M_{\odot} , N_{dg} = 16384

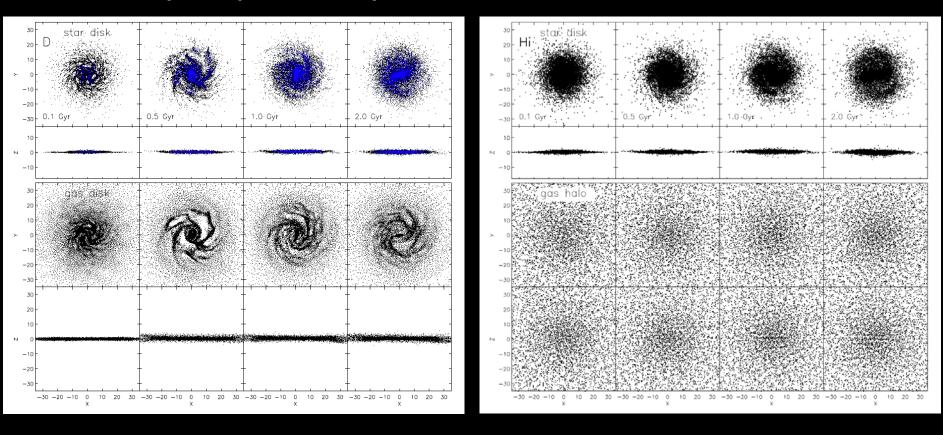

Gas halo: NFW, f_{hg} =0.01, M_{hg} =1.2 X 10¹⁰ M_{\odot} , N_{hg} = 32768 Gas disk: Exponential, f_{dg} =0.12, M_{dg} =0.6 X 10¹⁰ M_{\odot} , N_{dg} = 16384



5. Model DHn-f5

Gas halo: NFW, f_{hg} =0.01, M_{hg} =1.2 X 10¹⁰ M_{\odot} , N_{hg} = 32768 Gas disk: Exponential, f_{dg} =0.12, M_{dg} =0.6 X 10¹⁰ M_{\odot} , N_{dg} = 16384

Gas halo: NFW, f_{hg} =0.05, M_{hg} =6.0 X 10¹⁰ M_o, N_{hg} = 163840 Gas disk: Exponential, f_{dg} =0.12, M_{dg} =0.6 X 10¹⁰ M_o, N_{dg} = 16384


6. Model D

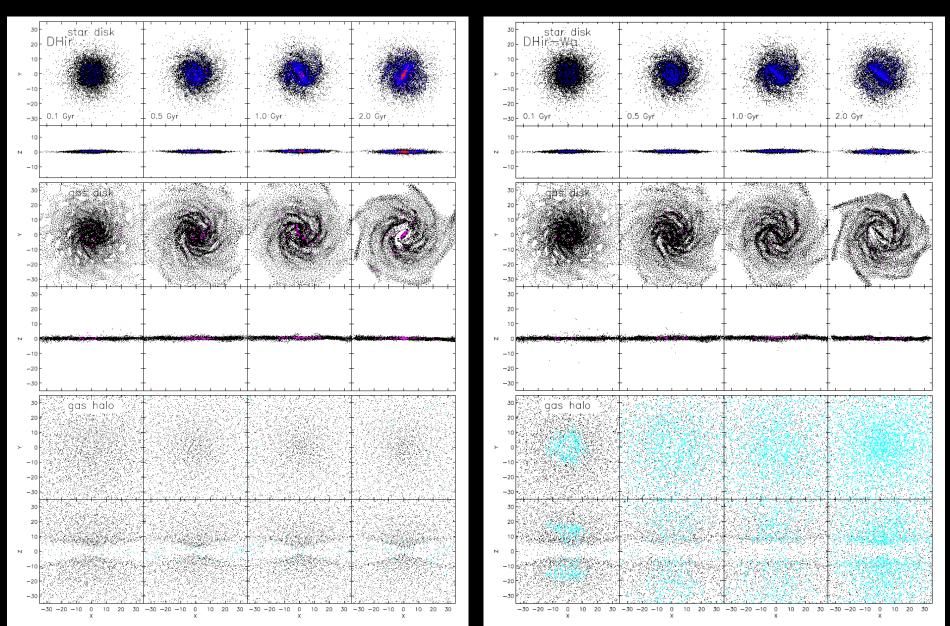
7. Model Hi

Gas halo: N/A

Gas disk: Exponential, $f_{dg}{=}0.12,~M_{dg}{=}0.6~X~10^{10}~M_{\odot},~N_{dg}{=}~16384$

Gas halo: Isothermal, $\rm f_{hg}$ =0.01, $\rm M_{hg}$ =1.2 X 10^{10} M_{\odot}, N_{hg}= 32768 Gas disk: N/A

Wind Test Runs:


Set1-1 DHi Set1-2 DHi-f5 Set1-3 DHir Set1-4 DHn Set1-5 DHn-f5 Set1-6 D Set1-7 Hi

Set2-1 DHir-Wa Set2-2 D-Wa

Model DHir

(with Winds) Model DHir-Wa

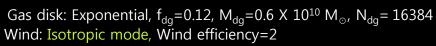
Gas halo: Isothermal+Spin, f_{hg} =0.01, M_{hg} =1.2 X 10¹⁰ M_{\odot} , N_{hg} = 32768Gas halo: Isothermal+Spin, f_{hg} =0.01, M_{hg} =1.2 X 10¹⁰ M_{\odot} , N_{hg} = 32768Wind: N/AWind: Axial mode, Wind efficiency=2

Model D

30

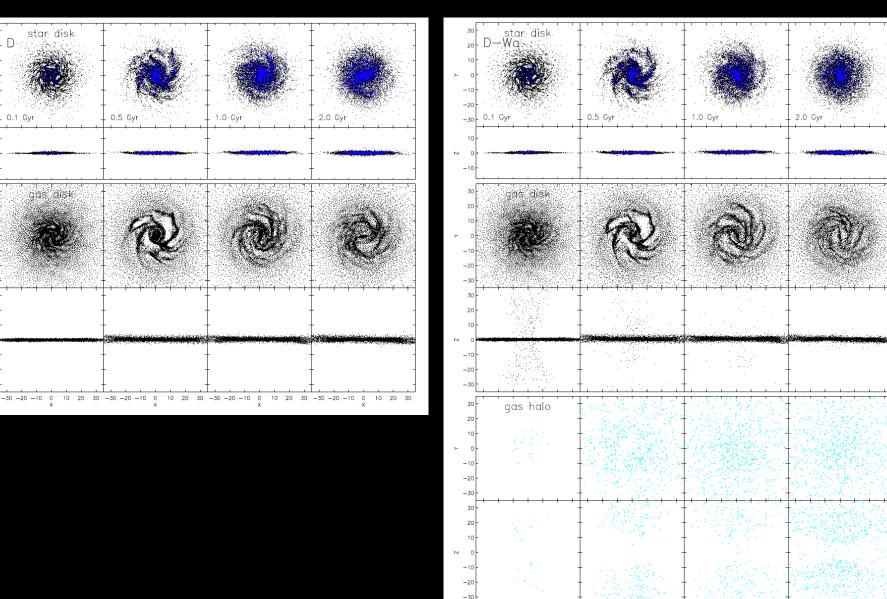
20

-20

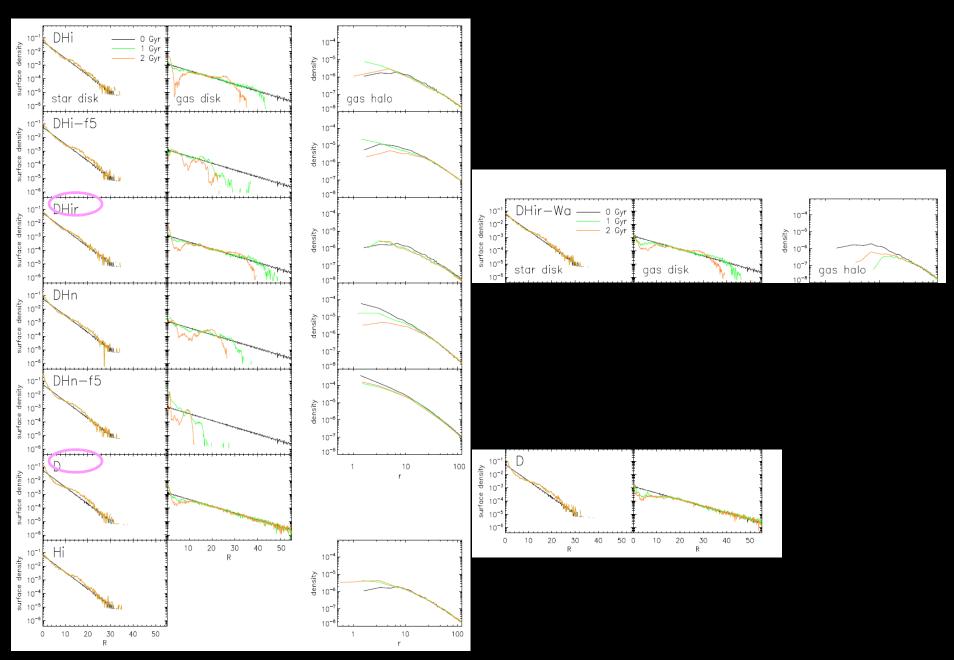

- 30

-10

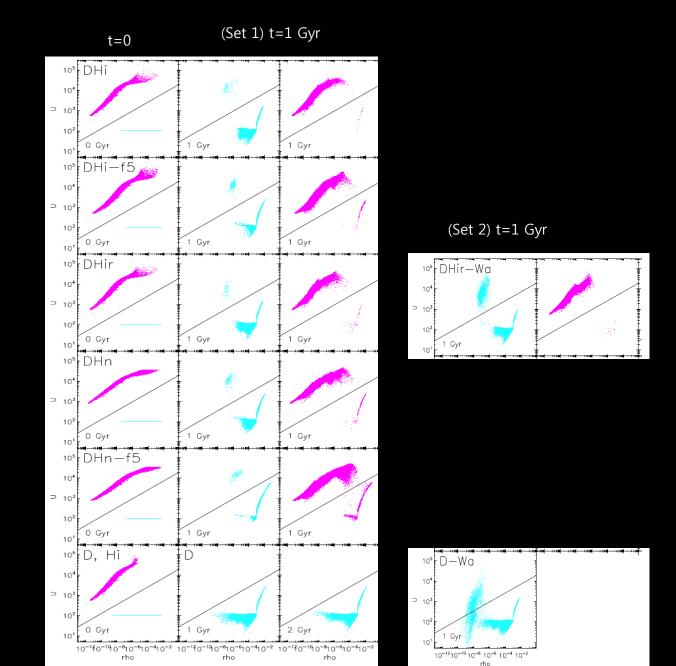
-20

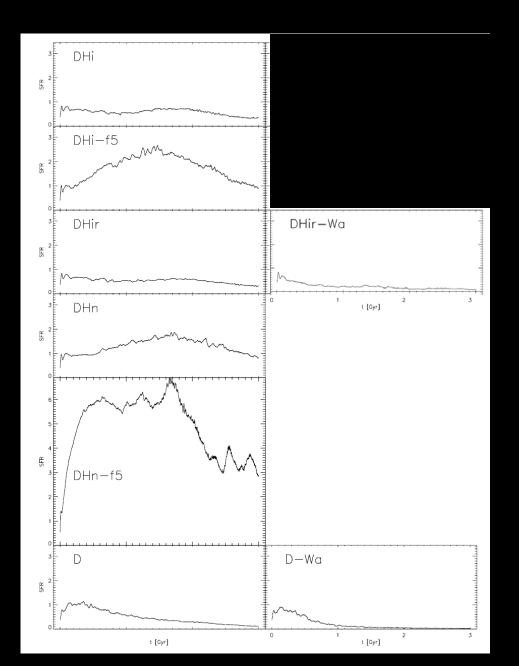

(with Winds)Model D-Wa

Gas disk: Exponential, $f_{dg}{=}0.12,~M_{dg}{=}0.6~X~10^{10}~M_{\odot},~N_{dg}{=}~16384$ Wind: N/A



-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0


10 20 30 -30 -20 -10 0 10 20 30


Density Profiles

Internal Energy vs Local Density

Star Formation Rate vs Time

Summary

We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk.

Model D: shows an increasing star formation rate (SFR) at the beginning of the simulation and then a continuously decreasing rate to the end of the run at 3 Gyr.

Type DH models: (depending on the density profile and Mhg) SFRs come out to be either relatively flat or increasing until the middle of the run then decreasing to the end.

The rotation of a gas halo is found to make SFR lower in the model.

Galactic winds always make SFRs lower than the same runs but without winds.

Conclusion

We conclude that the effects of a gaseous halo on the evolution of galaxies are generally too significant to be simply ignored and expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components. 감사합니다 :-)

Thank you!