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Outline

Comprehensive analysis of the  properties of high-z halos, such as spin 
and shape, with an unprecedented inclusion of detailed gas physics.

First attempt to make such study in the low-end of the halo mass function 
(≈ 104−7M⊙) including gas physics

We provide useful fits for all quantities of interest, and their dependences 
with mass and redshifts, which can easily be inserted as input for 
analytical and semi-analytical models. 

Connection with PopIII stars IMF
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Motivation
The formation of first, metal-free (often referred to as PopIII) stars in the Universe represents a milestone during 
cosmic evolution, marking the end of the Dark Ages and producing the first heavy elements

Thus, a key problem in physical cosmology is to understand the origin and evolution of such objects, born out of the 
pristine conditions leftover by the Big Bang. More specifically, the most urgent question concerns their Initial Mass 
Function (IMF), which, despite its relevance, remains at best a poorly known quantity due to the lack of direct 
observations.

Until recently, studies based on the standard ΛCDM cosmological model for structure formation predicted that the 
first stars were predominantly massive

Even more recently results found that  that instead of forming a single massive object, the gas typically fragments 
into a number of protostars with a range of different masses.

In spite of this unsettled situation, a broad consensus exists on the fact that rotation of the protogalactic cloud is the 
key factor in determining the final outcome of the collapse.

The angular momentum of the gas is probably linked to that of the parent halo. Hence, it is important to turn our 
attention to the properties of the dark matter halos that host the first stars to put the entire problem on a solid basis.

Our  purpose is to explore the properties (such as spin and shape) of the high-z halos likely to host the first stars, 
with an unprecedented inclusion of detailed gas physics. 
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Simulation

More details in Maio et al. (2010), The simulations were performed 
by using the machines of the Max Planck Society computing center, 
Garching (Rechenzentrum-Garching).

Follows the evolution of: e−, 
H, H+, H−, He, He+, He++, 
H2, H+2 , D, D+, HD, HeH+

PopIII and PopII/I star formation, metal pollution 
C, O, Si, Fe, Mg, S, Ca, (Tornatore et al. 2007)

Gas cooling from resonant and fine-structure 
lines (Maio et al. 2007, 2009)  

Feedback effects (Springel & Hernquist 2003)

Modified version of Gadget-2 code. Initial conditions samples in z = 100,  within a cubic 
volume of comoving side 1 Mpc h−1 and 3203 particles per gas and dark matter species, 
corresponding to masses of 116 M⊙h−1 and 755 M⊙h−1, respectively.  Snapshots in the range 11 
< z <16, identification of halos by FoF and substructures by SubFind.
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Metal pollution
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Figure 1. Left panel: metal filling factors for different regimes. Solid, dashed, and dotted lines are the filling factors computed for particles having metallicity
Z > 0, 0 < Z < Zcrit, and Z ! Zcrit (Zcrit = 10−4Z"), respectively. Right panel: metal (Z > 0) filling factors for simulations with different critical
metallicity. Solid, dotted, dashed, dot-dashed lines refer to Zcrit = 10−3Z", Zcrit = 10−4Z", Zcrit = 10−5Z", and Zcrit = 10−6Z", respectively.

Figure 2. Redshift evolution of metal-enriched particles in the ρ − T diagram. Data refer to redshift z = 15.00 (left), z = 13.01 (center), and z = 11.00
(right). The color scale corresponds to the fraction of particles in a given pixel (normalized to 1). The critical density at z = 11, in the standard ΛCDM
model, corresponds to ∼ 10−26 h2g/cm3. In the right panel, mechanical and thermodynamical evolution of the gas is shown at different stages, via different
arrows (see labels): low-temperature cooling from molecules (mainly H2) or fine-structure (FS) transitions leads to star formation (SF) and subsequent gas
outflows into the low-density regions; there hot gas cools down to ∼ 104 K via resonant atomic transitions and below 104 K via molecular and fine-structure
transitions.

Figure 3. Redshift evolution of gas density distribution. Data refers to redshift z = 15.00 (left), z = 13.01 (center), and z = 11.00 (right). The histograms
filled by 45o blue lines refer to pristine gas, while the ones by 135o red lines to enriched gas. Normalization is fixed to 1 for the maximum, in both cases.

Gravitational enrichment 3

becoming larger than∼ 10−2 and completely dominating early gas
cooling. At the bottom of the cooling branch, we assume that star
formation and feedback processes occur (e.g. Springel & Hernquist
2003; Maio et al. 2009), and metals are produced from stellar evo-
lution. The feedback processes we deal with are thermal feedback,
mechanical feedback (both shocks and winds) and the chemical
feedback: thermal feedback from supernovæ injects entropy into
the medium heating up closeby particles and destroying molecules;
kinetic wind feedback is stochastically taken into account, accord-
ing to Springel & Hernquist (2003), and it is responsible for re-
moving away from the collapsing sites and spreading around gas
and metals at velocities of the order of some ∼ 102 km/s; chem-
ical feedback rules the actual stellar IMF and leads the transition
from the primordial popIII regime to the following popII one. In the
popIII star formation regime, the only stars contributing to metal
pollution are the ones in the mass range [140 M", 260 M"], that
explode as PISN after a life-time of at most ∼ 106 yr. Their con-
tribution to the total SFR rapidly drops down ∼ 10−3 − 10−4 (see
Maio et al. 2010), and this seems consistent with what can be in-
ferred from more recent observational analyses (e.g. Papovich et al.
2010, and private communication). Given the many uncertainties
on the primordial IMF (e.g. see Yoshida 2006; Yoshida et al. 2007;
Campbell & Lattanzio 2008; Suda & Fujimoto 2010), we also con-
sider the other limiting case of a Salpeter-like popIII IMF, with
mass range similar to popII, but with metal yields consistent with
those from metal-free stars (see Sect. 4.1. in Maio et al. 2010, for
further details).
In the case of popII, the surrounding environment is polluted via
SNII and SNIa, which occur ∼ 107 − 108 yr, and∼ 109 − 1010 yr
following the formation of their progenitor stars, respectively.
Moreover, stars can loose a significant fraction of mass during their
AGB phase. Metals are injected into the ISM and pollute it by
means of stellar winds. First star formation events take place at
z ∼ 16.3, when the Universe is roughly 2.4× 108 years old.
In the following, results from our analyses will be presented and
discussed. We will refer to enriched gas particles with metallicity,
Z, higher than or equal to Zcrit as popII particles, while to the
ones with metallicity below Zcrit as popIII particles. Particles with
Z = 0 are referred to as pristine particles.

3 RESULTS

In this section we present our results, paying attention first to some
global properties of metal enrichment (Sect. 3.1), then to the statis-
tical (Sect. 3.2) and dynamical (Sect. 3.3) ones. We also discuss the
features and the interplay between the two different stellar popula-
tions (popIII and popII).

3.1 Volume filling factor

To have a general idea of the metal spreading process, we start pre-
senting the basic features of the volume filling factor.
In Fig. 1 (left panel), the volume filling factor of metal enriched
particles as a function of the redshift is shown. The volume filling
factor, fV , is defined as follows3:

fV ≡

∑
i mZ,i/ρZ,i∑

j mj/ρj
∼

∑
i mZ,i/ρZ,i

V
, (1)

3 Here, there is no difference by defining fV via physical or comoving
quantities.

with i and j integers running over the number of the enriched par-
ticles and of all the SPH particles, respectively, mZ particle metal
mass, ρZ metal-mass density, m particle total mass, ρ total-mass
density, and V simulation box volume. The solid line refers to the
filling factor computed by considering only the polluted particles
(Z > 0), the dashed line refers to the particles with metallic-
ity 0 < Z < Zcrit (popIII regime), and the dotted line to the
particles with metallicity Z ! Zcrit (popII regime). In all the
three cases, the general trend is similar: the filling factor increases
as redshift decreases. This is simply due to ongoing metal pollu-
tion events at z " 16. In more detail, at early times, some met-
als are produced, after the first PISN explosions, and the produc-
tion sites are the very dense, clumped regions (with overdensities
δ > 104), so the resulting volume filling factor is rather small
(∼ 10−16). At later times, particles are ejected from these dense
regions and their densities rapidly decrease, which results in an in-
crease of fV . In this regime, low-density particles, which experi-
enced mechanical (winds) and chemical (metal pollution) feedback
from stellar evolution, are dominating. Interestingly, the discrimi-
nation by Zcrit shows a higher filling factor for the particles with
0 < Z < Zcrit, at redshift ∼ 14− 16, and a behaviour dominated
by the Z ! Zcrit – particles, at z " 14. This has to be inter-
preted as a consequence of the metal-enrichment process, as most
of the enriched regions enter the popII regime very rapidly, while
the residual popIII areas are confined to isolated regions or on the
border of popII star forming sites and contribute less to fV . The
exact value of the critical metallicity, Zcrit, does not alter signifi-
cantly the properties of metal pollution, because of the high metal
yields of early stars: larger Zcrit slightly postpone the epoch when
popII becomes dominant, while smaller Zcrit anticipate it. In the
extreme case of Zcrit = 10−6 Z", then, fV is immediatelly led
by the popII regime, basically since the onset of star formation. A
Salpeter-like popIII IMF will only induce a short delay in the over-
all behaviour, due to the longer stellar lifetimes (see also Maio et al.
2010). To illustrate the insensitivity of the volume filling factor to
the adopted value of Zcrit, in the same Fig. 1 (right panel) we com-
pare the filling factors obtained for simulations having different
critical metallicities: dotted, solid, dashed, dot-dashed lines refer
to Zcrit = 10−3Z", Zcrit = 10−4Z", Zcrit = 10−5Z", and
Zcrit = 10−6Z", respectively. As expected, there are no strong
variations among these cases, and despite some differences at the
initial times, the overall trends easily converge. The one-order of
magnitude difference in the very early epoch is a consequence of
the chemical feedback: higher values of Zcrit allow the popIII
regime to last longer and to pollute more with respect to the lower-
Zcrit cases.

3.2 Statistics

To go deeper into the analysis, we study in detail the relevant sta-
tistical properties of the gas during the early stages of metal enrich-
ment, and then we show the implications for the popIII and popII
regimes.

3.2.1 Global features

In Fig. 2, we show the redshift evolution of metal-enriched particles
in the phase diagram (ρ− T ), at z = 15.00 (left), z = 13.01 (cen-
ter), and z = 11.00 (right). The color scale denotes the fraction of
particles at any given density and temperature. The corresponding
age of the Universe is 2.66×108yr, 3.24×108yr, and 4.09×108yr.
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Furthermore, after the onset of star formation, the hot tempera-
tures induced by SN thermal feedback keep dissociating molecules
and it becomes difficult for the pristine gas to cool down: in this
regime, the metal fine-structure transition cooling plays a domi-
nant role, and that is the reason why one finds enriched cooling
gas, ejected by wind feedback from nearby sources, deeper in the
potential wells. Thus, popIII can survive mostly outside clumped
regions, in isolated, or in low density environments, where relation
(6) is more easily satisfied, while popII dominates the dense, star
forming environments.
We note that the high resolution of our simulations and the de-
tailed chemistry treatment allow us to make firm, consistent, and
robust statements on the gas behaviour, from the pristine, molecular
stages, to the following star formation phases, and the popIII/popII
metal enrichment events. In particular, the simulations include
a complete, self-consistent treatment of primordial gas (dealing
with cooling and molecule evolution), which is lacking in other
simple approximations adopted in several previous works (e.g.
Kobayashi 2004; Scannapieco et al. 2005; Tornatore et al. 2007;
Oppenheimer et al. 2009; Finlator et al. 2011). Those implementa-
tion can be very useful when investigating metal distributions or
present-day star formation, but they obviously fail at high redshift,
when molecules are the leading coolants, primordial stars form,
and the popIII/popII transition takes place. Consistently with those
works, metal enrichment is very patchy and inhomogeneous, with
a characteristic “inside-out” mode. This is particularly true for the
primordial popIII regime, whose energetics is much more powerful
than the popII one. On the other hand, there are some caveats: given
the small size of the boxes, we are limited in the statistical sam-
pling of rare, large haloes. In the simulations presented here there
is no radiative-transfer treatment from stars, which can affect the
very close surroundings of individual massive popIII stars, by heat-
ing and ionizing the gas (e.g. Abel et al. 1999; Haiman et al. 2000;
Ricotti et al. 2001; Kitayama & Yoshida 2005; Iliev et al. 2005;
Ahn & Shapiro 2007; Wise & Abel 2008; Greif et al. 2009), but for
low-mass SN, this effect would be less severe (e.g. Hasegawa et al.
2009; Whalen et al. 2010). The inclusion of radiative transfer is rel-
ativelly easy, though, only when dealing with individual or a few
sources. It becomes very problematic and computationally expen-
sive when studying cosmological evolution with enormous num-
bers of stars whose radiation has to be followed simultaneously
with gas chemistry and hydrodynamics. However, we do not expect
substantial changes on our overall conclusions about the general
picture of the popIII/popII transition, or the dynamics of the metals.
Indeed, metals ejected with velocities of ∼ 102 km/s would prob-
ably be very little affected by radiative pressure (e.g. Johnson et al.
2010). The stellar radiation would probably enhance (see e.g. Fig.
6) the evacuation of pristine gas from the individual minihaloes and
would contribute to destroy H2 molecules (e.g. Omukai & Nishi
1999), leaving, at the same time, the produced metals as only rele-
vant coolants. This would essentially reproduce the same scenario
outlined in Sect. 3.3. Star formation in purely pristine haloes de-
layed by radiative or thermal feedback would require more mass
to be assembled and atomic cooling to become efficient: due to the
higher potential wells, metal spreading in such haloes would prob-
ably be less efficient.
Metal mixing due to diffusion processes is taken into account
by smoothing metallicities on the kernel. This might be a coarse
approximation (see also discussion in Maio et al. 2010, and
references therein), but realistic, solid and consistent imple-
mentations of (large-scale) metal diffusion are currently lack-
ing (approximated attempts are given by, e.g., Spitzer 1962;

Cowie & McKee 1977; Brookshaw 1985; Sarazin 1988; Monaghan
1992; Cleary & Monaghan 1999; de Avillez & Mac Low 2002;
Klessen & Lin 2003; Jubelgas et al. 2004; Monaghan et al. 2005;
Wadsley et al. 2008; Greif et al. 2009; Shen et al. 2010). One
should expect that large-scale metal mixing could increase the
metal-enriched mass which is spread around or falls back to the
high-density environments, but no definitive conclusions can be
drawn, at the present stage.
The precise cosmological parameters of the ΛCDMmodel adopted
could slightly affect the timescale of the picture, and significant
changes in the background cosmological frame could have some
impact, as structure formation could be significantly shifted in red-
shift. None the less, the global trends (e.g. see Maio et al. 2009) are
likely to be recovered.
To conclude, we can state that:

• metal pollution is a very efficient process and the critical
metallicity is easily reached in less than ∼ 108 yr;
• the population II regime is, in general, the dominant regime of

star formation;
• the population III regime is expected to survive in isolated en-

vironments or in the outskirts of star forming haloes;
• metal pollution follows an “inside-out” mode and early metals

are spread far away from their birth sites, even outside the virial
radius;
• the inside-out mode leads metal pollution in closeby star

forming haloes, inducing “gravitational enrichment”, while self-
enrichment is a negligeble process;
• the coexistence of cold, pristine-gas inflows and of hot,

enriched-gas outflows determines turbulence withR ∼ 108 −1010

and hydro instabilities;
• different Zcrit or popIII IMF alter only slightly these findings.
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Halo properties derivation

The influence of dark matter halo properties on primordial star formation 3

Sjk =
1
N

N
X

i=1

ri,jri,k. (2)

As the eigenvalues of S and I are the same, the two def-
initions are totally equivalent for halo shape studies. We
then restrict our discussion to the shape tensor. The eigen-
values of the diagonalised shape tensor define an ellipsoid,
which represents the equivalent homogeneous shape of the
halo in terms of the principal axis ratios, with the conven-
tion a ! b ! c. It is customary to refer to the axis ratios
p = c/b, q = b/a and s = c/a. The minor-to-major axis ratio
s measures the sphericity of the system (with s = 0 meaning
aspherical and s = 1 spherical), whereas p and q measure the
prolateness and oblateness respectively. A useful definition
is the triaxiality parameter:

T =
1 − q2

1 − s2
, (3)

which is a single parameter to measure if a halo is prolate
(T = 1) or oblate (T = 0).

Another way to calculate the shape tensor was intro-
duced by Allgood et al. (2006),

Sjk =
1
N

N
X

i=1

ri,jri,k

d2
i

, (4)

where dk is a distance measure to the k-th particle. The
distance measure is given by d2

k = x2
k +y2

k/q2 +z2
k/s2, where

q and s are found iteractively. In a more general way the
shape tensor can be generalized using an weight factor w(r),

Sjk =
1
N

N
X

i=1

w(r)ri,jri,k

d2
i

. (5)

A good revision about different approaches can be found in
Zemp et al. (2011). They explore 6 different methods for
determining shape, where the methods differ by both w(r)
and integration volume (ellipsoid shells of whole enclosed
ellipsoid volume). They test 3 different weight functions,
w(r) = 1, w(r) = 1/r2, w(r) = 1/d2

i , where di is defined
above. They conclude that using the weights can lead to
a systematic bias for the measured axis ratios beyond the
fact that it’s introduction make the physical meaning of the
shape tensor unclear. Thus, use w(r) = 1 and integrate over
the enclosed ellipsoidal volume shows least bias among the
tested methods. This choice is also preferred for halos with
lower number of particles and if the interest is not in lo-
cal shape (shape as a function of distance), but the gen-
eral shape instead. Hereafter all calculations are done using
equation 2 integrated over all enclosed ellipsoidal volume.

3.2 Spin

The spin parameter is a measure of the amount of coher-
ent rotation in a system compared to random motions. For
a spherical object, it is approximately the ratio of its own
angular velocity to the angular velocity needed for it to be
supported against gravity solely by rotation (see e.g. Pad-
manabhan 1993). The halo spin can be characterized by a
dimensionless parameter λ,

λ ≡ J |E|1/2

GM5/2
, (6)

where J , E, and M are the total angular momentum, energy,
and mass of the system, and G is the gravitational constant.
The specific angular momentum j (J/M) is

j =
1
N

N
X

i=1

ri × vi, (7)

with ri and vi been the position and velocity of i-th particle
relative to the halo centre and halo centre of momentum re-
spectively and N is the total number of particles inside the
halo. The kinetic, Ek, and potential, Ep energy are calcu-
lated directly during the simulation as

Ek =
1
2

N
X

i=1

miv
2
i ,

Ep =

„

N2 − N
N2

u − Nu

« „

−Gm2
p

η

« Nu−1
X

i=1

Nu
X

j=i+1

−W (rij/η).(8)

Where η is the softening length and W (u) is the softening
kernel. If the halo has more than 1000 particles, the potencial
is calculated using 1000 randomly selected particles Nu (for
more details see Springel 2005; Bett et al. 2007).

4 RESULTS

In the following we will discuss the results of our analysis,
with particular emphasis on the shape and the spin of the
halos.

4.1 Shape distribution

The shape dependence with halo mass, has been considered
previously by several authors. Despite they all agree with
the non-spherical nature of halos, the overall conclusion can
be different depending on assumptions about the the defini-
tion of halos, methods to measure shapes or the inclusion of
gas physics (Allgood et al. 2006). Bett et al. (2007) found
that more massive haloes tend to be less spherical and more
prolate. While Kazantzidis et al. (2004) found that halos
formed in simulations with gas cooling are more spherical
than halos from adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), which is equivalent
to ≈ 104−5M". The shape of the halos is described in terms
of sphericity, s, and triaxiality, T , as defined in section 3.
The contour levels of s and T as a function of the total halo
mass, Mh, is shown in figure 1 for z = 16 (upper panel)
and 11 (lower panel). Each contour represents the probabil-
ity of a halo to fall into a given region in the s − Mh or
T − Mh parameter space. For all considered redshift range
(z = 11 − 16) the average sphericity is 〈s〉 ∼ 0.3 ± 0.1, and
T " 0.4, with a clear preference for oblateness over pro-
lateness, in contrast with z = 0 halos that tend to be more
prolate and spherical. For example, 〈s〉 ≈ 0.6±0.1 for galaxy
mass halos at z = 0, found in pure collisionless simulations
(Allgood et al. 2006). Also the constraints from observations
of the lengthy tidal streams produced by the destruction of
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which is a single parameter to measure if a halo is prolate
(T = 1) or oblate (T = 0).

Another way to calculate the shape tensor was intro-
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A good revision about different approaches can be found in
Zemp et al. (2011). They explore 6 different methods for
determining shape, where the methods differ by both w(r)
and integration volume (ellipsoid shells of whole enclosed
ellipsoid volume). They test 3 different weight functions,
w(r) = 1, w(r) = 1/r2, w(r) = 1/d2

i , where di is defined
above. They conclude that using the weights can lead to
a systematic bias for the measured axis ratios beyond the
fact that it’s introduction make the physical meaning of the
shape tensor unclear. Thus, use w(r) = 1 and integrate over
the enclosed ellipsoidal volume shows least bias among the
tested methods. This choice is also preferred for halos with
lower number of particles and if the interest is not in lo-
cal shape (shape as a function of distance), but the gen-
eral shape instead. Hereafter all calculations are done using
equation 2 integrated over all enclosed ellipsoidal volume.

3.2 Spin

The spin parameter is a measure of the amount of coher-
ent rotation in a system compared to random motions. For
a spherical object, it is approximately the ratio of its own
angular velocity to the angular velocity needed for it to be
supported against gravity solely by rotation (see e.g. Pad-
manabhan 1993). The halo spin can be characterized by a
dimensionless parameter λ,

λ ≡ J |E|1/2

GM5/2
, (6)

where J , E, and M are the total angular momentum, energy,
and mass of the system, and G is the gravitational constant.
The specific angular momentum j (J/M) is
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with ri and vi been the position and velocity of i-th particle
relative to the halo centre and halo centre of momentum re-
spectively and N is the total number of particles inside the
halo. The kinetic, Ek, and potential, Ep energy are calcu-
lated directly during the simulation as
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Where η is the softening length and W (u) is the softening
kernel. If the halo has more than 1000 particles, the potencial
is calculated using 1000 randomly selected particles Nu (for
more details see Springel 2005; Bett et al. 2007).

4 RESULTS

In the following we will discuss the results of our analysis,
with particular emphasis on the shape and the spin of the
halos.

4.1 Shape distribution

The shape dependence with halo mass, has been considered
previously by several authors. Despite they all agree with
the non-spherical nature of halos, the overall conclusion can
be different depending on assumptions about the the defini-
tion of halos, methods to measure shapes or the inclusion of
gas physics (Allgood et al. 2006). Bett et al. (2007) found
that more massive haloes tend to be less spherical and more
prolate. While Kazantzidis et al. (2004) found that halos
formed in simulations with gas cooling are more spherical
than halos from adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), which is equivalent
to ≈ 104−5M". The shape of the halos is described in terms
of sphericity, s, and triaxiality, T , as defined in section 3.
The contour levels of s and T as a function of the total halo
mass, Mh, is shown in figure 1 for z = 16 (upper panel)
and 11 (lower panel). Each contour represents the probabil-
ity of a halo to fall into a given region in the s − Mh or
T − Mh parameter space. For all considered redshift range
(z = 11 − 16) the average sphericity is 〈s〉 ∼ 0.3 ± 0.1, and
T " 0.4, with a clear preference for oblateness over pro-
lateness, in contrast with z = 0 halos that tend to be more
prolate and spherical. For example, 〈s〉 ≈ 0.6±0.1 for galaxy
mass halos at z = 0, found in pure collisionless simulations
(Allgood et al. 2006). Also the constraints from observations
of the lengthy tidal streams produced by the destruction of
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Where η is the softening length and W (u) is the softening
kernel. If the halo has more than 1000 particles, the potencial
is calculated using 1000 randomly selected particles Nu (for
more details see Springel 2005; Bett et al. 2007).

4 RESULTS

In the following we will discuss the results of our analysis,
with particular emphasis on the shape and the spin of the
halos.

4.1 Shape distribution

The shape dependence with halo mass, has been considered
previously by several authors. Despite they all agree with
the non-spherical nature of halos, the overall conclusion can
be different depending on assumptions about the the defini-
tion of halos, methods to measure shapes or the inclusion of
gas physics (Allgood et al. 2006). Bett et al. (2007) found
that more massive haloes tend to be less spherical and more
prolate. While Kazantzidis et al. (2004) found that halos
formed in simulations with gas cooling are more spherical
than halos from adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), which is equivalent
to ≈ 104−5M". The shape of the halos is described in terms
of sphericity, s, and triaxiality, T , as defined in section 3.
The contour levels of s and T as a function of the total halo
mass, Mh, is shown in figure 1 for z = 16 (upper panel)
and 11 (lower panel). Each contour represents the probabil-
ity of a halo to fall into a given region in the s − Mh or
T − Mh parameter space. For all considered redshift range
(z = 11 − 16) the average sphericity is 〈s〉 ∼ 0.3 ± 0.1, and
T " 0.4, with a clear preference for oblateness over pro-
lateness, in contrast with z = 0 halos that tend to be more
prolate and spherical. For example, 〈s〉 ≈ 0.6±0.1 for galaxy
mass halos at z = 0, found in pure collisionless simulations
(Allgood et al. 2006). Also the constraints from observations
of the lengthy tidal streams produced by the destruction of
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Where η is the softening length and W (u) is the softening
kernel. If the halo has more than 1000 particles, the potencial
is calculated using 1000 randomly selected particles Nu (for
more details see Springel 2005; Bett et al. 2007).
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In the following we will discuss the results of our analysis,
with particular emphasis on the shape and the spin of the
halos.

4.1 Shape distribution

The shape dependence with halo mass, has been considered
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the non-spherical nature of halos, the overall conclusion can
be different depending on assumptions about the the defini-
tion of halos, methods to measure shapes or the inclusion of
gas physics (Allgood et al. 2006). Bett et al. (2007) found
that more massive haloes tend to be less spherical and more
prolate. While Kazantzidis et al. (2004) found that halos
formed in simulations with gas cooling are more spherical
than halos from adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), which is equivalent
to ≈ 104−5M". The shape of the halos is described in terms
of sphericity, s, and triaxiality, T , as defined in section 3.
The contour levels of s and T as a function of the total halo
mass, Mh, is shown in figure 1 for z = 16 (upper panel)
and 11 (lower panel). Each contour represents the probabil-
ity of a halo to fall into a given region in the s − Mh or
T − Mh parameter space. For all considered redshift range
(z = 11 − 16) the average sphericity is 〈s〉 ∼ 0.3 ± 0.1, and
T " 0.4, with a clear preference for oblateness over pro-
lateness, in contrast with z = 0 halos that tend to be more
prolate and spherical. For example, 〈s〉 ≈ 0.6±0.1 for galaxy
mass halos at z = 0, found in pure collisionless simulations
(Allgood et al. 2006). Also the constraints from observations
of the lengthy tidal streams produced by the destruction of
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3.2 Better halo catalogues

3.2.1 Groupfinder problems

The FOF and SO group-finding algorithms have various
well-documented drawbacks. Groupfinders such as SO which
use the overdensity contained within a spherical region tend
to impose a more spherical geometry on the resulting sys-
tems. Although this is not a problem for many objects, the
algorithm can sometimes result in very unnatural-looking
structures. An example is shown in figure A4. This compares
a massive FOF halo with the corresponding SO object. The
centre of mass of the FOF system is well separated from
the minimum of the potential, and the halo is significantly
elongated. This results, when growing a sphere around the
potential minimum to form the SO halo, in the virial over-
density being reached sooner in one direction than another.
The SO halo contains particles in low-density regions outside
the FOF halo, and has a sharp cutoff in another direction
when the FOF halo continues. The more ‘normal’ haloes, in
the background, are much less affected.

The problems associated with the FOF groupfinder can
be more extreme, and can affect a greater proportion of the
haloes. One of the most commonly-cited problems (e.g. Gelb
& Bertschinger 1994, Governato et al. 1997) is that well-
resolved objects identified using the FOF algorithm are of-
ten at risk of becoming linked with neighbouring objects via
tenuous bridges of particles. Low-mass particle bridges are
usually extremely transient structures, being just a chance
grouping of particles at that instant in time. The joining of
two (or more) otherwise unrelated objects of similar mass in
this way results in a very large velocity dispersion. Examin-
ing the halo in velocity-space will clearly show the multiple-
object nature of the system. An example of a halo formed
from objects joined by a tenuous bridge can be seen in Fig.
A1.

Sometimes more massive haloes can be formed by the
chaining together of somewhat smaller objects that are un-
dergoing mergers or close flybys with their neighbours. Their
multi-object composition can again be seen in velocity space
as well as in real space, and although their connections are
likely to be less transitory than in the case of a thin bridge,
these objects are nevertheless well out of their equilibrium
state, and so are unhelpful when trying to characterise the
spins of typical dark matter haloes. See Fig. A2 for an ex-
ample of a larger multi-object halo.

A similar effect is that of velocity contamination of
small objects due to their proximity to more massive ones
(see Fig. A3 for an example). Just as particles can form
a bridge between passing haloes at the moment of the
snapshot, so an individual particle orbit can take it within
the linking length of a neighbouring halo, without forming
enough of a bridge for the haloes themselves to be joined.
The smaller halo will be contaminated by these interloper
particles, which will have a quite different mean velocity to
the halo’s own particles. This causes the mean velocity to
be shifted away from that of the ‘original’ halo, and the re-
sulting halo to have a much larger velocity dispersion than
expected for an object of that mass. The massive neigh-
bouring object will have a much higher velocity dispersion
anyway, so will be unaffected by such effects.

To illustrate the effect that these problems have on the
physical properties we calculate, we show the spin distribu-

Figure 1. Histogram of the spin parameters from the basic FO-
Fall halo catalogue of the Millennium Run, showing a long tail to
high spins. The tail continues up to λ ≈ 680, and there are over
900 000 objects with λ ! 0.3 (marked on the graph). The median
spin of the distribution, λmed, is displayed with the uncertainty
given by Eqn. 13. This demonstrates the need for more careful
definition and selection of haloes.

tion of the FOFall catalogue in Fig. 1. It shows a long tail at
higher spins; there are 900 748 objects (6% of the catalogue)
with spin λ ! 0.3. Fig. 2 shows the FOFall spin distribution
as a function of halo mass, rescaled to show the fractional
number of objects at each mass so the trend of the mass func-
tion is removed. It shows that the high-spin tail comes from
objects over a large range of masses, and is therefore not due
to under-resolving groups. These presumed-anomalous high
spins come from objects with high velocity dispersions for
their masses, caused by situations such as those described
above. This increases the haloes’ kinetic energies, T , leading
to large values of λ.

These features are not usually seen in other published
spin distributions (e.g. Gardner 2001, Vitvitska et al. 2002,
Avila-Reese et al. 2005, Tonini et al. 2006, among many oth-
ers), partly because more advanced groupfinders and halo
selection criteria are often used (as we do below). However,
the fact that we can see these artifacts so clearly is because
the Millennium Run gives us a vast number of objects, over
a wide range of masses.

For convenience, we shall refer to haloes suffering from
the problems described in this subsection as “mis-defined”
haloes, as their anomalously-high spins originate in how the
haloes are defined by the groupfinder algorithm in relation
to their environment, rather than any physical or numerical
effect.

3.2.2 A better groupfinder: The TREE haloes

As a third definition of halo, we use the ‘merger-tree’ haloes
described by Harker et al. (2006). These are the z = 0 ob-
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Figure 3. Spin as a function of halo mass for haloes in the
TREEall catalogue. The contouring is as in Fig. 2, i.e. in equal
logarithmic steps of 100.5, normalised to remove the mass func-
tion. In this plot, the inner bold contour (red) represents 10−1

of the haloes at each mass, and the outer bold contour (blue)
represents 10−5 of the haloes at each mass. The merger-tree halo
definition has moved many of the high-spin haloes visible in Fig.
2 down into the main body of the distribution.

to the TREEall catalogue, examining the effect of a wide
range of Q-values on the P (log λ) and λ(Mh) distributions.
Because of the relatively small numbers of objects with
anomalously high spins, we find that the QE cut makes
negligible difference to the shape of the spin distribution,
P (log λ). A very small value, Q ! 0.3, will act to shift the
median spin lower by a few percent, due to the mass de-
pendence seen in Fig 4. Through a detailed examination of
the λ(Mh) distribution, we find that a value of Q between
0.4 and 0.6 gives a good balance between removing the mis-
defined haloes and reducing the overall sample size (adding
noise and biasing it by mass). Higher values of Q allow some
mis-defined haloes to creep in, with a significant impact for
Q " 1.0. We will use a value of Q = 0.5 for our cleaned
halo catalogues. This cut is shown in the horizontal dashed
lines of Fig. 4, and the resulting λ(Mh) distribution is shown
in Fig. 5. Applying this form of virialisation cut on the halo
catalogue provides a useful tool with which to remove haloes
with anomalous spins caused by mis-defined haloes.

3.2.4 A better halo catalogue: Numerical effects

A second peculiarity of the spin distributions is visible
in Figs. 2, 3 and 5 (for the FOFall, TREEall and quasi-
equilibrium TREE halo catalogues respectively): an upturn
in the spin distribution at low masses. This can be seen
clearer in the variation of the median spin over mass bins
λmed(Mh), plotted for the FOF haloes in Fig. 6. This effect
is unrelated to the velocity contamination problems of the
mis-defined haloes, and instead comes from the mass resolu-

Figure 4. Contour plot of the instantaneous ‘virial ratio’, 2T/U+
1, against halo mass for TREE haloes. A virialised object has a
value around zero, and a gravitationally bound object has value
> −1. The tail at low values (large T ) extends down to 2T/U+1 ≈
−960; there are 3733 objects with 2T/U + 1 ! −1. The dashed
lines show the QE limit of Q = 0.5, and the lower particle-number
limit of Np = 300. The contouring is as in Fig. 2, i.e. relative halo
number density in equal logarithmic steps of size 100.5. The inner
bold contour (red) represents 10−1 of the haloes at each mass,
and the outer bold contour (blue) represents 10−4 of the haloes
at each mass. The plots for FOF and SO groups are similar to
this.

tion of the simulation affecting the angular momenta. This
effect has been seen before, for example by Reed et al. (2005)
in the context of subhaloes. To understand the cause of this
effect, consider a continuous object with angular momentum
Jtrue. If we construct a realisation of this object using a sam-
ple of N discrete particles, the resulting angular momentum
can be modelled as the vector sum of the ‘true’ angular mo-
mentum (from the continuous object) with a noise vector
oriented in a random direction: J = Jtrue + Jnoise. This
will act to push the measured magnitude J up above Jtrue

because the random direction of Jnoise will mean it reaches
outside the sphere of radius |Jtrue| more than 50% of the
time. Therefore, the random noise inherent in using discrete
particles to sample a near-continuous object such as a dark
matter halo would act to bias J upwards, and λ along with
it.

Modern N-body codes such as the L-GADGET-II code
used for the Millennium Run are very good at conserving
quantities such as energy and angular momentum, so for
a well-resolved object there is negligible inaccuracy aris-
ing from particle discreteness. For a less well-resolved ob-
ject however, the effect can nevertheless be relevant, even
though the angular momentum of the particles making up
the halo has been well conserved. Discreteness mainly af-
fects the outer parts of a halo, making the effective surface
more jagged than that of the continuous object it represents.
We also expect the outer parts to harbour most of the an-
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Figure 7. Median spins against number of particles in haloes, for
FOF haloes with the QE cut applied. The thin blue line shows the
milli lowres haloes and the thick red line shows those from the
Millennium Run itself. The error bars show the uncertainty on
the median, using Eqn. 13. The two lines show an identical trend
at low Np, demonstrating that the upturn in λmed is indeed a
numerical effect, affecting the spins of haloes containing fewer
than about 300 particles.

Fig. 4 shows how the QE and Np cuts we use relate
to one another for the TREE haloes. The low-Np cut has
a significantly stronger effect on the halo catalogue. Ap-
plying the QE cut on its own reduces the population of
the TREEall catalogue by only 0.3%; applying the low-Np

limit as well means removing in total 91.17% of the origi-
nal TREEall haloes (see Table 2). We refer to the resulting
cleaned TREE-halo catalogue as TREEclean, and it is these
haloes whose properties we shall be examining in detail.
In some cases, for completeness, we shall compare the re-
sults with those from the FOFclean and SOclean catalogues.
These are cleaned using the same Q = 0.5 and Np ! 300
cuts as the TREEclean catalogue.

It is important to note that the criteria we have adopted
– the QE cut and low-Np limit – are those appropriate to the
quantities of interest in this work. For example, Fausti-Neto
et al (in prep.) use the substructure parameter S = ∆r/Rvir,
where ∆r is the distance between the potential minimum of
the halo and its centre of mass. Their final criteria for se-
lecting haloes in the Millennium simulation are S < 0.07
and 2T

U + 1 > −0.25. They are concerned with fitting den-
sity profiles to haloes, and using the substructure parameter
allows them to remove haloes with a large fraction of mass
in substructures which would otherwise contaminate their
results. Similarly, Macciò et al. (2006) define an “offset pa-
rameter” as xoff = ∆r/Rvir, where ∆r is measured from
the most-bound particle rather than the potential minimum.
They use this alongside the rms of their density profile fits,
to assess the quality of their halo catalogues for estimates
of halo concentration. Although we have examined the sub-

structure/offset parameter and how it affects λ, we find that
it is not useful in removing the mis-defined haloes, or those
whose spins are dominated by the numerical effects discussed
above.

Having successfully implemented an appropriate
groupfinder and cleaned the resulting halo catalogues, we
can now proceed to examine their spin properties. The FOF
and TREE halo catalogues, including some halo properties
and semi-analytic galaxy properties, are publicly available
online1 (Lemson et al. 2006).

4 RESULTS

4.1 The form of the spin distribution

The median spin of the TREEclean halo catalogue is λmed =
0.0381. The distribution of halo spins about the median,
P (λ), has been often fitted with a lognormal function (e.g.
van den Bosch 1998; Gardner 2001; Bailin & Steinmetz
2005), i.e. a Gaussian in log λ:

P (log λ) =
1

σlg

√
2π

exp

[

− log2 (λ/λ0)

2σ2
lg

]

(14)

While this fitting function has proved adequate for small
numbers of objects, we find that for the > 106 haloes
in the Millennium simulation, deviations from a Gaussian
are clear and significant. The spin distribution drops faster
than a Gaussian at high spins, and slower than a Gaus-
sian at low spins. The best fit to the TREEclean catalogue
is shown in Fig. 8, which fits Eqn. 14 with peak location
λ0 = 0.03687±0.000016 and width σlg = 0.2216±0.00012.2

The corresponding lognormal function of λ has the same
peak, and a width of σ = ln(10)σlg. The fit has a reduced-
χ2 of 40.46.

Part of the reason why a lognormal is such a poor fit
is that this function strongly avoids very low spin values,
whereas the real distribution, based as it is on the three-
dimensional vector j, does not. The longer tail at low-λ is
primarily due to the distribution of j being smooth and
isotropic about j = 0, implying3 that P (log λ) ∝ λ3.

We have found that the following function provides a
better description of the data:

P (log λ) = A
(

λ
λ0

)3

exp

[

−α
(

λ
λ0

)3/α
]

(15)

For the normalised spin distribution, we can express A in
terms of the other free parameters, α and λ0 (the peak lo-
cation):

A = 3 ln 10
αα−1

Γ(α)
(16)

1 http://www.mpa-garching.mpg.de/millennium/
2 Throughout this paper, the quoted uncertainties on best-fitting
parameters are given by the square root of the diagonal of the
covariance matrix for that fit.
3 Macciò et al. (2006) claimed the low-λ tail is due to the higher
uncertainty in λ at low values. However, by varying the minimum
Np for the halo catalogue, and hence the uncertainty in λ, we
found that the low-λ side of the distribution consistently drops
off slower than the high-λ end, confirming that this shape is not
primarily due to uncertainties.
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Figure 12. The median, in bins of halo mass, of the axis ratio s
(top) and the triaxiality parameter T (bottom), for TREEclean
haloes, using the same mass binning scheme as in Fig. 6. The
low-Np limit of 300 particles is marked with a dashed line, and
data points have also been plotted below this limit). The medians
for FOFclean and SOclean haloes follow the same behaviour as
the TREEclean haloes, but with SO objects being more spheri-
cal and FOF objects less; FOF haloes are more prolate and SO
haloes show a weaker preference for prolateness. Error bars on
the medians (following Eqn. 13) are plotted, but most are van-
ishingly small. The whisker bars are percentiles, at the equivalent
of 1σ (68% of haloes, boxes) and 2σ (95% of haloes, bars); from
the bottom to the top of each graph, these show where approx-
imately 2.5%, 16%, 84%, and 97.5% of the haloes have s (or T )
below these values. The thick blue lines show broken-line fits to
the data; see the text for details. The dotted red line is the fit of
Allgood et al. 2006, who used a different definition of a halo (see
text).

where x = log Mh/( h−1M!). We fit with m1, m2, x0 and c2

as free parameters, with c1 ≡ c2 + (m2 − m1)x0. The fitted
parameters for smed are:

m1,s = (9.2 ± 0.87) × 10−3, c1,s = 0.56 ± 0.015,

m2,s = (−6.6 ± 0.12) × 10−2, c2,s = 1.48 ± 0.015,

x0,s = 12.27 ± 0.012

with a reduced-χ2 of 29.9. The fitted parameters for Tmed

are:

m1,T = (−1.6 ± 0.18) × 10−2, c1,T = 0.82 ± 0.031,

m2,T = (7.2 ± 0.24) × 10−2, c2,T = −0.25 ± 0.029,

x0,T = 12.28 ± 0.021

Figure 13. The main plot shows spin versus axis ratio s = c/a
for TREEclean haloes; contouring is similar to Fig. 2, showing the
number density of haloes, normalised by the number of haloes in
each s-bin. The red inner bold contour represents 10−1 of the
haloes in each s-bin, the blue outer bold contour represents 10−3

of the haloes in each s-bin, and the contours are spaced in equal
logarithmic steps of 100.5. The upper plot is a histogram of s for
TREEclean haloes, effectively showing the function by which the
contour plot has been normalised.

with a reduced-χ2 of 4.27. The two mass breakpoints x0,s

and x0,T agree within their uncertainties.
Allgood et al. (2006) fit a power-law to smed(Mh). This

is plotted in Fig. 12, and indicates that that their haloes are
significantly less spherical than ours. This is largely a result
of different group definitions; although not plotted, we find
that our SOclean and FOFclean catalogues differ from the
TREEclean results by a similar amount. A power-law of the
type used by Allgood et al. (2006) would not be a good fit
to the data presented here which have a definite change in
slope towards lower halo masses.

The overall distributions of s and T are shown in the
upper plots of Figs. 13 and 15. These agree well with distri-
butions seen previous work, e.g. Bailin & Steinmetz (2005)
and Shaw et al. (2006). The drop-off in halo sphericity below
about s ∼ 0.3 can be explained by considering how flatter
haloes would puff up due to bending instabilities (Merritt &
Sellwood 1994).

4.4 Spin and shape parameters

The relationship between spin parameter and halo shape is
illustrated in Figs 13, 14 and 15. Fig. 14 emphasises the
trend visible in Fig. 13 by plotting the median spin parame-
ter as a function of s for different mass bins. There is a clear
trend for more spherical haloes to exhibit less coherent ro-
tation. Although this trend is in the sense one might näıvely
expect, the haloes, in fact, do not have very high spin, and
are not rotationally supported. The origin of this trend is

Weak dependence with 
halo mass

Well described by a lognormal, but best 
fit with a power-law

More spherical and prolate
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Figure 1. Sphericity s (upper panels), and triaxiality T (lower
panels), as a function of total halo mass for halos at z = 16
(upper figure) and z = 11 (lower). The contour levels represent
50%, 75%, 90%, 95% and 97.5% of the sample.

more massive halos tend to be less spherical and more pro-
late; Kazantzidis et al. (2004) noticed that halos formed in
simulations with gas cooling are more spherical than halos
in adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), equivalent to a total
mass of ≈ 104−5M!. The shape of the halos is described in
terms of sphericity, s, and triaxiality, T , as defined in Sec.
3.1. The probability contour levels of s and T as a function
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Figure 2. Spin distribution of the total (dark matter + gas) halo
(black dashed lines), the dark matter (grey dot-dashed lines) and
the gas (solid lines). The upper and lower panels refer to z = 16
and 11, respectively.

of the total halo mass, Mh, are shown in Fig. 1 for z = 16
(upper panel) and z = 11 (lower panel).

In the entire redshift range considered (11 < z < 16) the
average sphericity is 〈s〉 = 0.3± 0.1, and for more than 90%
of halos T ! 0.4, showing a clear preference for oblateness
over prolateness. This is markedly different from z = 0 halos
that tend to be more prolate and spherical: for example,
pure collisionless simulations (Allgood et al. 2006) found
〈s〉 ≈ 0.6 ± 0.1 for galaxy mass halos ∼ 1012h−1M!. Note
that constraints from observations of the Sagittarius tidal
streams give best-fit parameters s ≈ 0.67, q ≈ 0.83, and
T ≈ 0.56, in agreement with the Galactic model by Law
et al. (2009).

Using a non-linear last square method computed with

s / M0.147
h
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Figure 1. Sphericity s (upper panels), and triaxiality T (lower
panels), as a function of total halo mass for halos at z = 16
(upper figure) and z = 11 (lower). The contour levels represent
50%, 75%, 90%, 95% and 97.5% of the sample.

more massive halos tend to be less spherical and more pro-
late; Kazantzidis et al. (2004) noticed that halos formed in
simulations with gas cooling are more spherical than halos
in adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), equivalent to a total
mass of ≈ 104−5M!. The shape of the halos is described in
terms of sphericity, s, and triaxiality, T , as defined in Sec.
3.1. The probability contour levels of s and T as a function
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Figure 2. Spin distribution of the total (dark matter + gas) halo
(black dashed lines), the dark matter (grey dot-dashed lines) and
the gas (solid lines). The upper and lower panels refer to z = 16
and 11, respectively.

of the total halo mass, Mh, are shown in Fig. 1 for z = 16
(upper panel) and z = 11 (lower panel).

In the entire redshift range considered (11 < z < 16) the
average sphericity is 〈s〉 = 0.3± 0.1, and for more than 90%
of halos T ! 0.4, showing a clear preference for oblateness
over prolateness. This is markedly different from z = 0 halos
that tend to be more prolate and spherical: for example,
pure collisionless simulations (Allgood et al. 2006) found
〈s〉 ≈ 0.6 ± 0.1 for galaxy mass halos ∼ 1012h−1M!. Note
that constraints from observations of the Sagittarius tidal
streams give best-fit parameters s ≈ 0.67, q ≈ 0.83, and
T ≈ 0.56, in agreement with the Galactic model by Law
et al. (2009).

Using a non-linear last square method computed with
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Figure 1. Sphericity s (upper panels), and triaxiality T (lower
panels), as a function of total halo mass for halos at z = 16
(upper figure) and z = 11 (lower). The contour levels represent
50%, 75%, 90%, 95% and 97.5% of the sample.

more massive halos tend to be less spherical and more pro-
late; Kazantzidis et al. (2004) noticed that halos formed in
simulations with gas cooling are more spherical than halos
in adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), equivalent to a total
mass of ≈ 104−5M!. The shape of the halos is described in
terms of sphericity, s, and triaxiality, T , as defined in Sec.
3.1. The probability contour levels of s and T as a function
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Figure 2. Spin distribution of the total (dark matter + gas) halo
(black dashed lines), the dark matter (grey dot-dashed lines) and
the gas (solid lines). The upper and lower panels refer to z = 16
and 11, respectively.

of the total halo mass, Mh, are shown in Fig. 1 for z = 16
(upper panel) and z = 11 (lower panel).

In the entire redshift range considered (11 < z < 16) the
average sphericity is 〈s〉 = 0.3± 0.1, and for more than 90%
of halos T ! 0.4, showing a clear preference for oblateness
over prolateness. This is markedly different from z = 0 halos
that tend to be more prolate and spherical: for example,
pure collisionless simulations (Allgood et al. 2006) found
〈s〉 ≈ 0.6 ± 0.1 for galaxy mass halos ∼ 1012h−1M!. Note
that constraints from observations of the Sagittarius tidal
streams give best-fit parameters s ≈ 0.67, q ≈ 0.83, and
T ≈ 0.56, in agreement with the Galactic model by Law
et al. (2009).

Using a non-linear last square method computed with

s / M0.128
h

T / M0.276
h T / M0.285

h

Oblate
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In order to choose the most suitable distribution, we
fit the spin distribution of halos in all redshift range. Then
we use the maximum likelihood test to justify our choice.
In the following we present the average value over all
redshifts of the reduced χ2. For lognormal distribution is
χ2

lognormal = 2.89 ± 0.94 against χ2
beta = 11.95 ± 4.85,

χ2
gamma = 11.38 ± 4.85 and χ2

weibull = 13.53 ± 4.34, re-
spectively. In figure 4, we plot the cumulative distribution
function of all distributions against the simulations, where
we can clearly see that lognormal fits better the data. The
distribution of spin parameter can be written as

P (λ) =
1

λσ0

√
2π

exp

»

− ln2 (λ/λ0)
2σ2

0

–

. (17)

Where λ0 is the location parameter and σ0 is the shape
parameter of the distribution. The best fit values for mean,
λ̄, and standard deviation, σ̄, as a function of redshift are3

λ̄(z) = 1.315 − 3.681 × 10−1z + 3.903 × 10−2z2

− 1.831 × 10−3z3 + 3.206 × 10−05z4, (18)

and

σ̄(z) = 4.706 − 1.405z + 1.57 × 10−1z2

− 7.793 × 10−3z3 + 1.443 × 10−4z4. (19)

If we include the a priori value of λ = 0.0367± 0.0429 (Bett
et al. 2007) at z = 0,

λ̄(z) = 0.0367 − 1.330 × 10−3z − 7.015 × 10−5z2

+ 5.166 × 10−6z3, (20)

and

σ̄(z) = 0.0429 − 4.819 × 10−4z − 3.381 × 10−4z2

+ 1.733 × 10−5z3. (21)

While it is well known that dependences of spin with
halo masses are somehow weak (Macciò et al. 2007; Bett
et al. 2007), for small objects this is not verified yet. There-
fore analogously to the shape distribution, in figure 5 we
show the contour levels of the halo spin as a function of
total halo mass for z = 16 and 11. Assuming a power law
λ ∝ Mα, gives as best fit

〈λ〉(z) = ζλ

„

M
h−1M"

«αλ

, (22)

αλ = −1.64 × 102 + 4.97 × 101z − 5.60z2

+ 2.78 × 10−1z3 − 5.16 × 10−3z4,

ζλ = 4.056 − 0.993z + 0.045z2 − 0.004z3.

The slope αλ evolves from −0.023 to 0.012 at z = 16-11
respectively. While both values a consistent with 0, we found
even a weaker dependence for lower values of redshift.

3 The mean and variance of lognormal distribution are given by

λ̄ = eλ0+σ2
0/2 and σ̄2 = eσ2

0+2λ0(eσ2
0 − 1).
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Figure 4. Cumulative distribution function of dark matter spin
compared with theoretical distributions at z = 16. Lognormal,
black line, beta, red dashed line, Weibull, orange dotted line,
Gamma, dot-dashed purple line. BC: this plot might actu-

ally be skipped and just mentioned in words...I’m not

sure, let’s see what Andrea suggests

5 CONNECTION WITH POP III INITIAL

MASS FUNCTION

The IMF is usually defined as a segmented power-law or a
log-normal type mass distribution (Kroupa 2001; Chabrier
2003). Both definitions are correlated by

dN ∝ m−αdm or dN ∝ mΓd(log m), (23)

where Γ = −(α−1) (Bonnell et al. 2007). The Salpeter slope
(Salpeter 1955) is given by α = 2.35 or Γ = −1.35. The
standard theory for the formation of Pop III stars predicts
an IMF dominated by high-mass stars, in contrast to the
present IMF of Pop II/I stars, which has a preference for
lower masses.

One of the important ingredients for the determination
of the IMF is the typical rotation of the gas. Extreme ul-
traviolet radiation from the protostar can ionize infalling
neutral gas, creating an H ii region whose expansion reduce
significantly the accretion of gas to the star. The radiation
would also destroy molecules and inhibit star formation in
the surrounding as well, affecting not only accretion onto
the central source, but also more distant protostellar cores
(see e.g. Ricotti et al. 2002; Ahn & Shapiro 2007; Whalen &
Norman 2008; Petkova & Maio 2012). While such expansion
is facilitated by protostellar cores with higher rotation, for
lower rotation case, there is an increment of the typical fi-
nal stellar mass. This occur because the gas density remains
high in the accretion envelope in the polar directions for the
same stellar mass. In the following we will make a simple
estimative for the expected Pop III IMF based on a combi-
nation of results from our simulations and the semi-analytic
prescription described in MT08. In addition to studying the
dependence of final stellar mass on several radiative feed-
back processes such as photodissociation of H2, Lyman-α
radiation pressure, formation and expansion of H ii regions,

c© 2010 RAS, MNRAS 000, 1–10
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Figure 1. Sphericity s (upper panels), and triaxiality T (lower
panels), as a function of total halo mass for halos at z = 16
(upper figure) and z = 11 (lower). The contour levels represent
50%, 75%, 90%, 95% and 97.5% of the sample.

more massive halos tend to be less spherical and more pro-
late; Kazantzidis et al. (2004) noticed that halos formed in
simulations with gas cooling are more spherical than halos
in adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), equivalent to a total
mass of ≈ 104−5M!. The shape of the halos is described in
terms of sphericity, s, and triaxiality, T , as defined in Sec.
3.1. The probability contour levels of s and T as a function
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Figure 2. Spin distribution of the total (dark matter + gas) halo
(black dashed lines), the dark matter (grey dot-dashed lines) and
the gas (solid lines). The upper and lower panels refer to z = 16
and 11, respectively.

of the total halo mass, Mh, are shown in Fig. 1 for z = 16
(upper panel) and z = 11 (lower panel).

In the entire redshift range considered (11 < z < 16) the
average sphericity is 〈s〉 = 0.3± 0.1, and for more than 90%
of halos T ! 0.4, showing a clear preference for oblateness
over prolateness. This is markedly different from z = 0 halos
that tend to be more prolate and spherical: for example,
pure collisionless simulations (Allgood et al. 2006) found
〈s〉 ≈ 0.6 ± 0.1 for galaxy mass halos ∼ 1012h−1M!. Note
that constraints from observations of the Sagittarius tidal
streams give best-fit parameters s ≈ 0.67, q ≈ 0.83, and
T ≈ 0.56, in agreement with the Galactic model by Law
et al. (2009).

Using a non-linear last square method computed with
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the Gauss-Newton algorithm, and approximating s ∝ Mαs

h

and T ∝ MαT

h , we find αs ≈ 0.147 and αT = 0.285 at z =
16, and αs ≈ 0.128 and αT = 0.276 at z = 11. The fits are
given below2,

〈s(z)〉 = ζs

(

Mh

h−1M"

)αs

, (9)

αs = −4.1082 + 0.9834z − 0.0754z2 + 0.00191z3 ,

ζs = 20.143 − 4.977z + 0.384z2 − 0.00979z3 ,

and

〈T (z)〉 = ζT

(

Mh

h−1M"

)αT

, (10)

αT = −9.7534 + 2.2924z − 0.1727z2 + 0.00429z3 ,

ζT = 51.720 − 12.500z + 0.946z2 − 0.0236z3 .

The most massive halos in the simulation (Mh =
106.5−7M") tend to be more spherical and prolate than
smaller ones, with weak variation of the mass dependence
with redshift.

4.2 Spin distribution

The spin distribution of the total (dark matter + gas) mass,
dark matter mass and gas mass is shown in Fig. 2 for z = 16
(top panel) and z = 11 (low panel). The curve is smoothed
using a kernel density estimator for a sample of n elements,

f(x, hs) =
1

nhs(x)

n
∑

i=1

K

(

x− xi

hs(x)

)

, (11)

with a Gaussian kernel K and an adaptive bandwidth hs.
The distributions of dark matter and gas are considerably
different at high redshift (z = 16), with the baryons rotat-
ing slower than the dark matter, which gives the dominant
contribution to the total spin. At lower redshift, instead,
the spin distributions of dark matter and gas track each
other almost perfectly, as a consequence of a longer time
interval available for momentum redistribution between the
two components. It is important to notice that the com-
parisons are done by collecting different dark matter and
gas particles of the same halo, thus fully accounting for the
back-reaction of baryons on the parent dark matter distri-
bution. It is very common to fit the halo spin distribution
with a lognormal function (Bailin & Steinmetz 2005; Davis
& Natarajan 2010). However, Bett et al. (2007) found de-
viations from such functional form when studying a large
(> 106) number of halos in the Millennium simulation. Both
the lognormal and Weibull models can be used quite ef-
fectively to analyze skewed data sets. Although these two
models may provide similar data fit for moderate sample
sizes, the inferences based on the model will often involve
tail probabilities, where the effect of the model assumptions
is very critical. This makes it important to use a quantitative
diagnostic to quantify the best distribution to use. To do so,
we test four classical distributions: lognormal, Gamma, beta

2 Note that all fits hereafter are valid only within the redshift
range of the simulation, unless explicitly stated.
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Figure 3. Cumulative distribution function of dark matter spin
(thick blue solid line) compared with theoretical distributions at
z = 16. The theoretical distributions are: lognormal (black solid
line), beta (red dashed), Weibull (orange dotted) and Gamma
(purple dot-dashed).

and Weibull, whose shapes are given by:

fL(x;µ, σ) =
1

xσ
√
2π

e−(lnx−µ)2/2σ2

, (12)

fΓ(x; k, θ) =
1
θk

1
Γ(k)

xk−1e(1−x)/θ, (13)

fβ(x;α,β) =
Γ(α+ β)

Γ(α)Γ(β)xα−1(1− x)β−1
, (14)

fW (x;k,λ) =
k
λ

(x
λ

)k−1
e−(x/λ)k . (15)

In order to choose the most suitable distribution, we fit the
spin distribution of halos in our redshift range. Then, we use
a Maximum Likelihood test to justify our choice. We obtain
the following redshift-averaged values of the reduced chi-
square: (χ2

L,χ
2
β,χ

2
Γ,χ

2
W ) = (2.89±0.94, 11.95±4.85, 11.38±

4.85, 13.53 ± 4.34). In Fig. 3, we plot the cumulative distri-
bution function for the four distributions above and the one
obtained from the simulations. It is clear that the lognormal
fits the data at best.

The distribution of spin parameter can be written as

P (λ) =
1

λσ0

√
2π

exp

[

− ln2 (λ/λ0)
2σ2

0

]

, (16)

where λ0 is the location parameter and σ0 is the shape pa-
rameter of the distribution. The best fit values for mean and
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In order to choose the most suitable distribution, we fit the
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the following redshift-averaged values of the reduced chi-
square: (χ2

L,χ
2
β,χ

2
Γ,χ

2
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bution function for the four distributions above and the one
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The distribution of spin parameter can be written as

P (λ) =
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− ln2 (λ/λ0)
2σ2
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]

, (16)

where λ0 is the location parameter and σ0 is the shape pa-
rameter of the distribution. The best fit values for mean and

The spin distributions of dark matter and gas are considerably different at z = 16, with the baryons rotating slower 
than the dark matter. At z = 11, instead, they track each other almost perfectly, as a consequence of a longer 
time interval available for momentum redistribution between the two components.

Well described by a lognormal distribution
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Spin-Mass Correlation
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variance, σ2, as a function of redshift are3

〈λ(z)〉 = 1.315 − 3.681 × 10−1z + 3.903 × 10−2z2

− 1.831 × 10−3z3 + 3.206 × 10−5z4, (17)

and

σ2(z) = 0.1754 − 5.246 × 10−2z + 5.871 × 10−3z2

− 2.909 × 10−4z3 + 5.385 × 10−6z4. (18)

While it is well known that the dependence of spin on
halo masses is relatively weak (Macciò et al. 2007; Bett et al.
2007), it has not been verified yet whether this holds also
for small objects. Therefore, analogously to the shape dis-
tribution, in Fig. 4 we show the contour levels of the halo
spin as a function of total halo mass at z = 16 and 11.

Assuming a power law λ ∝ Mα
h , best fit becomes

〈λ(z)〉 = ζλ

(

Mh

h−1M"

)αλ

, (19)

αλ = −1.64× 102 + 4.97 × 101z − 5.60z2

+ 2.78× 10−1z3 − 5.16 × 10−3z4,

ζλ = 4.056 − 0.993z + 0.045z2 − 0.004z3.

The slope αλ evolves from −0.023 at z = 16, to 0.012 at
z = 11; both values are consistent with 0, indicating that
the spin parameter distribution is essentially independent
on halo mass also at the very high redshifts considered here.

5 IMPLICATIONS FOR THE POPIII IMF

In the following we discuss the possibility to connect the host
halo properties to the typical mass scale of the collapsed pro-
tostar. It is important to keep in mind that all results pre-
sented here rely on the best available semi-analytical model
to translate the angular momentum distribution into a corre-
sponding stellar IMF. Despite such limitation, our approach
provides the best way to statistically analyze a large sample
of simulated halos, which could not be performed otherwise.
For a detailed study of the properties of the rotation and
structure of PopIII stars we refers the reader for the works
of Greif et al. (2012); Stacy et al. (2012). They resolve four
minihalos down to scales as small as 0.05 R". They found
little evidence of correlation between the properties of each
host minihalo and the spin of its largest protostar or the
total number of protostars formed in the minihalo. However
due the low number of halos probed, it’s difficult reach a
statistical significant conclusion.

The IMF is usually defined as a segmented power-law or
a log-normal type mass distribution (Kroupa 2001; Chabrier
2003). Both definitions are correlated by

dN ∝ m−α
# dm# or dN ∝ mΓ

#d(logm#), (20)

where Γ = −(α − 1) (Bonnell et al. 2007) and N is the
number of stars with masses in the range m# to m# + dm#.
The Salpeter slope (Salpeter 1955) is given by α = 2.35,
or Γ = −1.35. As discussed in the Introduction, the PopIII
IMF is actually unknown, but there are hints that it could

3 The mean and variance of lognormal distribution are given by

〈λ〉 = eλ0+σ2
0
/2 and σ2 = eσ

2
0
+2λ0(eσ

2
0 − 1).
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Figure 4. Spin distribution as a function of the total mass for
halos at z = 16 (top figure) and 11 (bottom). The contour levels
in the upper panels represent 50%, 75%, 90%, 95% and 97.5% of
the sample, while in the lower panels the median values per bin of
mass (logMh = 0.5) is shown. The width of boxes is proportional
to the square root of the number of halos within each bin and the
whiskers extend to the most extreme data point, which is within
the 50% interquartile range, i.e. the difference between the largest
and smallest values in the middle 50% of the dataset.
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Figure 4. Spin distribution as a function of the total mass for
halos at z = 16 (top figure) and 11 (bottom). The contour levels
in the upper panels represent 50%, 75%, 90%, 95% and 97.5% of
the sample, while in the lower panels the median values per bin of
mass (logMh = 0.5) is shown. The width of boxes is proportional
to the square root of the number of halos within each bin and the
whiskers extend to the most extreme data point, which is within
the 50% interquartile range, i.e. the difference between the largest
and smallest values in the middle 50% of the dataset.

Halo Spin virtually independent of total 
halo mass

de Souza, R. S., et al 2012 de Souza, R. S., et al 2012
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Comparison with low-z and massive halos12 Bett et al.

Figure 12. The median, in bins of halo mass, of the axis ratio s
(top) and the triaxiality parameter T (bottom), for TREEclean
haloes, using the same mass binning scheme as in Fig. 6. The
low-Np limit of 300 particles is marked with a dashed line, and
data points have also been plotted below this limit). The medians
for FOFclean and SOclean haloes follow the same behaviour as
the TREEclean haloes, but with SO objects being more spheri-
cal and FOF objects less; FOF haloes are more prolate and SO
haloes show a weaker preference for prolateness. Error bars on
the medians (following Eqn. 13) are plotted, but most are van-
ishingly small. The whisker bars are percentiles, at the equivalent
of 1σ (68% of haloes, boxes) and 2σ (95% of haloes, bars); from
the bottom to the top of each graph, these show where approx-
imately 2.5%, 16%, 84%, and 97.5% of the haloes have s (or T )
below these values. The thick blue lines show broken-line fits to
the data; see the text for details. The dotted red line is the fit of
Allgood et al. 2006, who used a different definition of a halo (see
text).

where x = log Mh/( h−1M!). We fit with m1, m2, x0 and c2

as free parameters, with c1 ≡ c2 + (m2 − m1)x0. The fitted
parameters for smed are:

m1,s = (9.2 ± 0.87) × 10−3, c1,s = 0.56 ± 0.015,

m2,s = (−6.6 ± 0.12) × 10−2, c2,s = 1.48 ± 0.015,

x0,s = 12.27 ± 0.012

with a reduced-χ2 of 29.9. The fitted parameters for Tmed

are:

m1,T = (−1.6 ± 0.18) × 10−2, c1,T = 0.82 ± 0.031,

m2,T = (7.2 ± 0.24) × 10−2, c2,T = −0.25 ± 0.029,

x0,T = 12.28 ± 0.021

Figure 13. The main plot shows spin versus axis ratio s = c/a
for TREEclean haloes; contouring is similar to Fig. 2, showing the
number density of haloes, normalised by the number of haloes in
each s-bin. The red inner bold contour represents 10−1 of the
haloes in each s-bin, the blue outer bold contour represents 10−3

of the haloes in each s-bin, and the contours are spaced in equal
logarithmic steps of 100.5. The upper plot is a histogram of s for
TREEclean haloes, effectively showing the function by which the
contour plot has been normalised.

with a reduced-χ2 of 4.27. The two mass breakpoints x0,s

and x0,T agree within their uncertainties.
Allgood et al. (2006) fit a power-law to smed(Mh). This

is plotted in Fig. 12, and indicates that that their haloes are
significantly less spherical than ours. This is largely a result
of different group definitions; although not plotted, we find
that our SOclean and FOFclean catalogues differ from the
TREEclean results by a similar amount. A power-law of the
type used by Allgood et al. (2006) would not be a good fit
to the data presented here which have a definite change in
slope towards lower halo masses.

The overall distributions of s and T are shown in the
upper plots of Figs. 13 and 15. These agree well with distri-
butions seen previous work, e.g. Bailin & Steinmetz (2005)
and Shaw et al. (2006). The drop-off in halo sphericity below
about s ∼ 0.3 can be explained by considering how flatter
haloes would puff up due to bending instabilities (Merritt &
Sellwood 1994).

4.4 Spin and shape parameters

The relationship between spin parameter and halo shape is
illustrated in Figs 13, 14 and 15. Fig. 14 emphasises the
trend visible in Fig. 13 by plotting the median spin parame-
ter as a function of s for different mass bins. There is a clear
trend for more spherical haloes to exhibit less coherent ro-
tation. Although this trend is in the sense one might näıvely
expect, the haloes, in fact, do not have very high spin, and
are not rotationally supported. The origin of this trend is
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a dimensionless parameter λ,

λ ≡ J |E|1/2

GM5/2
, (6)

where J , E, andM are the total angular momentum, energy,
and mass of the system, and G is the gravitational constant.
The (specific) angular momentum per unit mass is

j =
1
N

N
∑

i=1

ri × vi, (7)

with ri and vi being the position and velocity of i-th particle
relative to the halo center and halo center of momentum,
respectively; N is again the total number of particles inside
the halo. The kinetic, Ek, and potential, Ep, energies are
calculated on-the-fly during the simulation as

Ek =
1
2

N
∑

i=1

miv
2
i ,

Ep =

(

N2 −N
N2

u −Nu

)(

−Gm2
p

η

)Nu−1
∑

i=1

Nu
∑

j=i+1

−W (rij/η),(8)

where η is the softening length and W (u) is the softening
kernel. If the halo contains more than 1000 particles, the po-
tential is calculated using Nu = 1000 randomly selected par-
ticles (for more details see Springel 2005; Bett et al. 2007).

4 RESULTS

4.1 Shape distribution

The shape dependence on halo mass has been considered
previously by several authors. Despite they all agree on the
non-spherical nature of halos, overall conclusions can be dif-
ferent depending on the assumptions made to define ha-
los, the methods to measure shapes or the inclusion of gas
physics (Allgood et al. 2006). Bett et al. (2007) found that
more massive halos tend to be less spherical and more pro-
late; Kazantzidis et al. (2004) noticed that halos formed in
simulations with gas cooling are more spherical than halos
in adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), equivalent to a total
mass of ≈ 104−5M". The shape of the halos is described in
terms of sphericity, s, and triaxiality, T , as defined in Sec.
3.1. The probability contour levels of s and T as a function
of the total halo mass, Mh, are shown in Fig. 1 for z = 16
(upper panel) and z = 11 (lower panel).

In the entire redshift range considered (11 < z < 16) the
average sphericity is 〈s〉 = 0.3± 0.1, and for more than 90%
of halos T ! 0.4, showing a clear preference for oblateness
over prolateness. This is markedly different from z = 0 halos
that tend to be more prolate and spherical: for example,
pure collisionless simulations (Allgood et al. 2006) found
〈s〉 ≈ 0.6 ± 0.1 for galaxy mass halos ∼ 1012h−1M". Note
that constraints from observations of the Sagittarius tidal
streams give best-fit parameters s ≈ 0.67, q ≈ 0.83, and
T ≈ 0.56, in agreement with the Galactic model by Law
et al. (2009).

Using a non-linear last square method computed with
the Gauss-Newton algorithm, and approximating s ∝ Mαs

h
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Figure 2. Sphericity, s and triaxiality, T , as a function of halo
mass at z =16 (top figure) and 11 (bottom). The box-plot shows
the median values per logarithm bin of mass (100.5M").

and T ∝ MαT

h , we find αs ≈ 0.147 and αT = 0.285 at z =
16, and αs ≈ 0.128 and αT = 0.276 at z = 11. The fits are
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Figure 3. Spin as a function of halo mass for haloes in the
TREEall catalogue. The contouring is as in Fig. 2, i.e. in equal
logarithmic steps of 100.5, normalised to remove the mass func-
tion. In this plot, the inner bold contour (red) represents 10−1

of the haloes at each mass, and the outer bold contour (blue)
represents 10−5 of the haloes at each mass. The merger-tree halo
definition has moved many of the high-spin haloes visible in Fig.
2 down into the main body of the distribution.

to the TREEall catalogue, examining the effect of a wide
range of Q-values on the P (log λ) and λ(Mh) distributions.
Because of the relatively small numbers of objects with
anomalously high spins, we find that the QE cut makes
negligible difference to the shape of the spin distribution,
P (log λ). A very small value, Q ! 0.3, will act to shift the
median spin lower by a few percent, due to the mass de-
pendence seen in Fig 4. Through a detailed examination of
the λ(Mh) distribution, we find that a value of Q between
0.4 and 0.6 gives a good balance between removing the mis-
defined haloes and reducing the overall sample size (adding
noise and biasing it by mass). Higher values of Q allow some
mis-defined haloes to creep in, with a significant impact for
Q " 1.0. We will use a value of Q = 0.5 for our cleaned
halo catalogues. This cut is shown in the horizontal dashed
lines of Fig. 4, and the resulting λ(Mh) distribution is shown
in Fig. 5. Applying this form of virialisation cut on the halo
catalogue provides a useful tool with which to remove haloes
with anomalous spins caused by mis-defined haloes.

3.2.4 A better halo catalogue: Numerical effects

A second peculiarity of the spin distributions is visible
in Figs. 2, 3 and 5 (for the FOFall, TREEall and quasi-
equilibrium TREE halo catalogues respectively): an upturn
in the spin distribution at low masses. This can be seen
clearer in the variation of the median spin over mass bins
λmed(Mh), plotted for the FOF haloes in Fig. 6. This effect
is unrelated to the velocity contamination problems of the
mis-defined haloes, and instead comes from the mass resolu-

Figure 4. Contour plot of the instantaneous ‘virial ratio’, 2T/U+
1, against halo mass for TREE haloes. A virialised object has a
value around zero, and a gravitationally bound object has value
> −1. The tail at low values (large T ) extends down to 2T/U+1 ≈
−960; there are 3733 objects with 2T/U + 1 ! −1. The dashed
lines show the QE limit of Q = 0.5, and the lower particle-number
limit of Np = 300. The contouring is as in Fig. 2, i.e. relative halo
number density in equal logarithmic steps of size 100.5. The inner
bold contour (red) represents 10−1 of the haloes at each mass,
and the outer bold contour (blue) represents 10−4 of the haloes
at each mass. The plots for FOF and SO groups are similar to
this.

tion of the simulation affecting the angular momenta. This
effect has been seen before, for example by Reed et al. (2005)
in the context of subhaloes. To understand the cause of this
effect, consider a continuous object with angular momentum
Jtrue. If we construct a realisation of this object using a sam-
ple of N discrete particles, the resulting angular momentum
can be modelled as the vector sum of the ‘true’ angular mo-
mentum (from the continuous object) with a noise vector
oriented in a random direction: J = Jtrue + Jnoise. This
will act to push the measured magnitude J up above Jtrue

because the random direction of Jnoise will mean it reaches
outside the sphere of radius |Jtrue| more than 50% of the
time. Therefore, the random noise inherent in using discrete
particles to sample a near-continuous object such as a dark
matter halo would act to bias J upwards, and λ along with
it.

Modern N-body codes such as the L-GADGET-II code
used for the Millennium Run are very good at conserving
quantities such as energy and angular momentum, so for
a well-resolved object there is negligible inaccuracy aris-
ing from particle discreteness. For a less well-resolved ob-
ject however, the effect can nevertheless be relevant, even
though the angular momentum of the particles making up
the halo has been well conserved. Discreteness mainly af-
fects the outer parts of a halo, making the effective surface
more jagged than that of the continuous object it represents.
We also expect the outer parts to harbour most of the an-
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variance, σ2, as a function of redshift are3

〈λ(z)〉 = 1.315 − 3.681 × 10−1z + 3.903 × 10−2z2

− 1.831 × 10−3z3 + 3.206 × 10−5z4, (17)

and

σ2(z) = 0.1754 − 5.246 × 10−2z + 5.871 × 10−3z2

− 2.909 × 10−4z3 + 5.385 × 10−6z4. (18)

While it is well known that the dependence of spin on
halo masses is relatively weak (Macciò et al. 2007; Bett et al.
2007), it has not been verified yet whether this holds also
for small objects. Therefore, analogously to the shape dis-
tribution, in Fig. 4 we show the contour levels of the halo
spin as a function of total halo mass at z = 16 and 11.

Assuming a power law λ ∝ Mα
h , best fit becomes

〈λ(z)〉 = ζλ

(

Mh

h−1M"

)αλ

, (19)

αλ = −1.64× 102 + 4.97 × 101z − 5.60z2

+ 2.78× 10−1z3 − 5.16 × 10−3z4,

ζλ = 4.056 − 0.993z + 0.045z2 − 0.004z3.

The slope αλ evolves from −0.023 at z = 16, to 0.012 at
z = 11; both values are consistent with 0, indicating that
the spin parameter distribution is essentially independent
on halo mass also at the very high redshifts considered here.

5 IMPLICATIONS FOR THE POPIII IMF

In the following we discuss the possibility to connect the host
halo properties to the typical mass scale of the collapsed pro-
tostar. It is important to keep in mind that all results pre-
sented here rely on the best available semi-analytical model
to translate the angular momentum distribution into a corre-
sponding stellar IMF. Despite such limitation, our approach
provides the best way to statistically analyze a large sample
of simulated halos, which could not be performed otherwise.
For a detailed study of the properties of the rotation and
structure of PopIII stars we refers the reader for the works
of Greif et al. (2012); Stacy et al. (2012). They resolve four
minihalos down to scales as small as 0.05 R". They found
little evidence of correlation between the properties of each
host minihalo and the spin of its largest protostar or the
total number of protostars formed in the minihalo. However
due the low number of halos probed, it’s difficult reach a
statistical significant conclusion.

The IMF is usually defined as a segmented power-law or
a log-normal type mass distribution (Kroupa 2001; Chabrier
2003). Both definitions are correlated by

dN ∝ m−α
# dm# or dN ∝ mΓ

#d(logm#), (20)

where Γ = −(α − 1) (Bonnell et al. 2007) and N is the
number of stars with masses in the range m# to m# + dm#.
The Salpeter slope (Salpeter 1955) is given by α = 2.35,
or Γ = −1.35. As discussed in the Introduction, the PopIII
IMF is actually unknown, but there are hints that it could

3 The mean and variance of lognormal distribution are given by

〈λ〉 = eλ0+σ2
0
/2 and σ2 = eσ

2
0
+2λ0(eσ

2
0 − 1).
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Figure 4. Spin distribution as a function of the total mass for
halos at z = 16 (top figure) and 11 (bottom). The contour levels
in the upper panels represent 50%, 75%, 90%, 95% and 97.5% of
the sample, while in the lower panels the median values per bin of
mass (logMh = 0.5) is shown. The width of boxes is proportional
to the square root of the number of halos within each bin and the
whiskers extend to the most extreme data point, which is within
the 50% interquartile range, i.e. the difference between the largest
and smallest values in the middle 50% of the dataset.
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Figure 1. Sphericity s (upper panels), and triaxiality T (lower
panels), as a function of total halo mass for halos at z = 16
(upper figure) and z = 11 (lower). The contour levels represent
50%, 75%, 90%, 95% and 97.5% of the sample.

more massive halos tend to be less spherical and more pro-
late; Kazantzidis et al. (2004) noticed that halos formed in
simulations with gas cooling are more spherical than halos
in adiabatic simulations.

To estimate the halo shape, we only use halos with more
than 100 particles (gas + dark matter), equivalent to a total
mass of ≈ 104−5M!. The shape of the halos is described in
terms of sphericity, s, and triaxiality, T , as defined in Sec.
3.1. The probability contour levels of s and T as a function
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Figure 2. Spin distribution of the total (dark matter + gas) halo
(black dashed lines), the dark matter (grey dot-dashed lines) and
the gas (solid lines). The upper and lower panels refer to z = 16
and 11, respectively.

of the total halo mass, Mh, are shown in Fig. 1 for z = 16
(upper panel) and z = 11 (lower panel).

In the entire redshift range considered (11 < z < 16) the
average sphericity is 〈s〉 = 0.3± 0.1, and for more than 90%
of halos T ! 0.4, showing a clear preference for oblateness
over prolateness. This is markedly different from z = 0 halos
that tend to be more prolate and spherical: for example,
pure collisionless simulations (Allgood et al. 2006) found
〈s〉 ≈ 0.6 ± 0.1 for galaxy mass halos ∼ 1012h−1M!. Note
that constraints from observations of the Sagittarius tidal
streams give best-fit parameters s ≈ 0.67, q ≈ 0.83, and
T ≈ 0.56, in agreement with the Galactic model by Law
et al. (2009).

Using a non-linear last square method computed with
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3.2 Better halo catalogues

3.2.1 Groupfinder problems

The FOF and SO group-finding algorithms have various
well-documented drawbacks. Groupfinders such as SO which
use the overdensity contained within a spherical region tend
to impose a more spherical geometry on the resulting sys-
tems. Although this is not a problem for many objects, the
algorithm can sometimes result in very unnatural-looking
structures. An example is shown in figure A4. This compares
a massive FOF halo with the corresponding SO object. The
centre of mass of the FOF system is well separated from
the minimum of the potential, and the halo is significantly
elongated. This results, when growing a sphere around the
potential minimum to form the SO halo, in the virial over-
density being reached sooner in one direction than another.
The SO halo contains particles in low-density regions outside
the FOF halo, and has a sharp cutoff in another direction
when the FOF halo continues. The more ‘normal’ haloes, in
the background, are much less affected.

The problems associated with the FOF groupfinder can
be more extreme, and can affect a greater proportion of the
haloes. One of the most commonly-cited problems (e.g. Gelb
& Bertschinger 1994, Governato et al. 1997) is that well-
resolved objects identified using the FOF algorithm are of-
ten at risk of becoming linked with neighbouring objects via
tenuous bridges of particles. Low-mass particle bridges are
usually extremely transient structures, being just a chance
grouping of particles at that instant in time. The joining of
two (or more) otherwise unrelated objects of similar mass in
this way results in a very large velocity dispersion. Examin-
ing the halo in velocity-space will clearly show the multiple-
object nature of the system. An example of a halo formed
from objects joined by a tenuous bridge can be seen in Fig.
A1.

Sometimes more massive haloes can be formed by the
chaining together of somewhat smaller objects that are un-
dergoing mergers or close flybys with their neighbours. Their
multi-object composition can again be seen in velocity space
as well as in real space, and although their connections are
likely to be less transitory than in the case of a thin bridge,
these objects are nevertheless well out of their equilibrium
state, and so are unhelpful when trying to characterise the
spins of typical dark matter haloes. See Fig. A2 for an ex-
ample of a larger multi-object halo.

A similar effect is that of velocity contamination of
small objects due to their proximity to more massive ones
(see Fig. A3 for an example). Just as particles can form
a bridge between passing haloes at the moment of the
snapshot, so an individual particle orbit can take it within
the linking length of a neighbouring halo, without forming
enough of a bridge for the haloes themselves to be joined.
The smaller halo will be contaminated by these interloper
particles, which will have a quite different mean velocity to
the halo’s own particles. This causes the mean velocity to
be shifted away from that of the ‘original’ halo, and the re-
sulting halo to have a much larger velocity dispersion than
expected for an object of that mass. The massive neigh-
bouring object will have a much higher velocity dispersion
anyway, so will be unaffected by such effects.

To illustrate the effect that these problems have on the
physical properties we calculate, we show the spin distribu-

Figure 1. Histogram of the spin parameters from the basic FO-
Fall halo catalogue of the Millennium Run, showing a long tail to
high spins. The tail continues up to λ ≈ 680, and there are over
900 000 objects with λ ! 0.3 (marked on the graph). The median
spin of the distribution, λmed, is displayed with the uncertainty
given by Eqn. 13. This demonstrates the need for more careful
definition and selection of haloes.

tion of the FOFall catalogue in Fig. 1. It shows a long tail at
higher spins; there are 900 748 objects (6% of the catalogue)
with spin λ ! 0.3. Fig. 2 shows the FOFall spin distribution
as a function of halo mass, rescaled to show the fractional
number of objects at each mass so the trend of the mass func-
tion is removed. It shows that the high-spin tail comes from
objects over a large range of masses, and is therefore not due
to under-resolving groups. These presumed-anomalous high
spins come from objects with high velocity dispersions for
their masses, caused by situations such as those described
above. This increases the haloes’ kinetic energies, T , leading
to large values of λ.

These features are not usually seen in other published
spin distributions (e.g. Gardner 2001, Vitvitska et al. 2002,
Avila-Reese et al. 2005, Tonini et al. 2006, among many oth-
ers), partly because more advanced groupfinders and halo
selection criteria are often used (as we do below). However,
the fact that we can see these artifacts so clearly is because
the Millennium Run gives us a vast number of objects, over
a wide range of masses.

For convenience, we shall refer to haloes suffering from
the problems described in this subsection as “mis-defined”
haloes, as their anomalously-high spins originate in how the
haloes are defined by the groupfinder algorithm in relation
to their environment, rather than any physical or numerical
effect.

3.2.2 A better groupfinder: The TREE haloes

As a third definition of halo, we use the ‘merger-tree’ haloes
described by Harker et al. (2006). These are the z = 0 ob-

�med = 0.0184± 0.00039
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Figure 7. Median spins against number of particles in haloes, for
FOF haloes with the QE cut applied. The thin blue line shows the
milli lowres haloes and the thick red line shows those from the
Millennium Run itself. The error bars show the uncertainty on
the median, using Eqn. 13. The two lines show an identical trend
at low Np, demonstrating that the upturn in λmed is indeed a
numerical effect, affecting the spins of haloes containing fewer
than about 300 particles.

Fig. 4 shows how the QE and Np cuts we use relate
to one another for the TREE haloes. The low-Np cut has
a significantly stronger effect on the halo catalogue. Ap-
plying the QE cut on its own reduces the population of
the TREEall catalogue by only 0.3%; applying the low-Np

limit as well means removing in total 91.17% of the origi-
nal TREEall haloes (see Table 2). We refer to the resulting
cleaned TREE-halo catalogue as TREEclean, and it is these
haloes whose properties we shall be examining in detail.
In some cases, for completeness, we shall compare the re-
sults with those from the FOFclean and SOclean catalogues.
These are cleaned using the same Q = 0.5 and Np ! 300
cuts as the TREEclean catalogue.

It is important to note that the criteria we have adopted
– the QE cut and low-Np limit – are those appropriate to the
quantities of interest in this work. For example, Fausti-Neto
et al (in prep.) use the substructure parameter S = ∆r/Rvir,
where ∆r is the distance between the potential minimum of
the halo and its centre of mass. Their final criteria for se-
lecting haloes in the Millennium simulation are S < 0.07
and 2T

U + 1 > −0.25. They are concerned with fitting den-
sity profiles to haloes, and using the substructure parameter
allows them to remove haloes with a large fraction of mass
in substructures which would otherwise contaminate their
results. Similarly, Macciò et al. (2006) define an “offset pa-
rameter” as xoff = ∆r/Rvir, where ∆r is measured from
the most-bound particle rather than the potential minimum.
They use this alongside the rms of their density profile fits,
to assess the quality of their halo catalogues for estimates
of halo concentration. Although we have examined the sub-

structure/offset parameter and how it affects λ, we find that
it is not useful in removing the mis-defined haloes, or those
whose spins are dominated by the numerical effects discussed
above.

Having successfully implemented an appropriate
groupfinder and cleaned the resulting halo catalogues, we
can now proceed to examine their spin properties. The FOF
and TREE halo catalogues, including some halo properties
and semi-analytic galaxy properties, are publicly available
online1 (Lemson et al. 2006).

4 RESULTS

4.1 The form of the spin distribution

The median spin of the TREEclean halo catalogue is λmed =
0.0381. The distribution of halo spins about the median,
P (λ), has been often fitted with a lognormal function (e.g.
van den Bosch 1998; Gardner 2001; Bailin & Steinmetz
2005), i.e. a Gaussian in log λ:

P (log λ) =
1

σlg

√
2π

exp

[

− log2 (λ/λ0)

2σ2
lg

]

(14)

While this fitting function has proved adequate for small
numbers of objects, we find that for the > 106 haloes
in the Millennium simulation, deviations from a Gaussian
are clear and significant. The spin distribution drops faster
than a Gaussian at high spins, and slower than a Gaus-
sian at low spins. The best fit to the TREEclean catalogue
is shown in Fig. 8, which fits Eqn. 14 with peak location
λ0 = 0.03687±0.000016 and width σlg = 0.2216±0.00012.2

The corresponding lognormal function of λ has the same
peak, and a width of σ = ln(10)σlg. The fit has a reduced-
χ2 of 40.46.

Part of the reason why a lognormal is such a poor fit
is that this function strongly avoids very low spin values,
whereas the real distribution, based as it is on the three-
dimensional vector j, does not. The longer tail at low-λ is
primarily due to the distribution of j being smooth and
isotropic about j = 0, implying3 that P (log λ) ∝ λ3.

We have found that the following function provides a
better description of the data:

P (log λ) = A
(

λ
λ0

)3

exp

[

−α
(

λ
λ0

)3/α
]

(15)

For the normalised spin distribution, we can express A in
terms of the other free parameters, α and λ0 (the peak lo-
cation):

A = 3 ln 10
αα−1

Γ(α)
(16)

1 http://www.mpa-garching.mpg.de/millennium/
2 Throughout this paper, the quoted uncertainties on best-fitting
parameters are given by the square root of the diagonal of the
covariance matrix for that fit.
3 Macciò et al. (2006) claimed the low-λ tail is due to the higher
uncertainty in λ at low values. However, by varying the minimum
Np for the halo catalogue, and hence the uncertainty in λ, we
found that the low-λ side of the distribution consistently drops
off slower than the high-λ end, confirming that this shape is not
primarily due to uncertainties.

6 R. S. de Souza, B. Ciardi, U. Maio, A. Ferrara

In order to choose the most suitable distribution, we
fit the spin distribution of halos in all redshift range. Then
we use the maximum likelihood test to justify our choice.
In the following we present the average value over all
redshifts of the reduced χ2. For lognormal distribution is
χ2

lognormal = 2.89 ± 0.94 against χ2
beta = 11.95 ± 4.85,

χ2
gamma = 11.38 ± 4.85 and χ2

weibull = 13.53 ± 4.34, re-
spectively. In figure 4, we plot the cumulative distribution
function of all distributions against the simulations, where
we can clearly see that lognormal fits better the data. The
distribution of spin parameter can be written as

P (λ) =
1

λσ0

√
2π

exp

»

− ln2 (λ/λ0)
2σ2

0

–

. (17)

Where λ0 is the location parameter and σ0 is the shape
parameter of the distribution. The best fit values for mean,
λ̄, and standard deviation, σ̄, as a function of redshift are3

λ̄(z) = 1.315 − 3.681 × 10−1z + 3.903 × 10−2z2

− 1.831 × 10−3z3 + 3.206 × 10−05z4, (18)

and

σ̄(z) = 4.706 − 1.405z + 1.57 × 10−1z2

− 7.793 × 10−3z3 + 1.443 × 10−4z4. (19)

If we include the a priori value of λ = 0.0367± 0.0429 (Bett
et al. 2007) at z = 0,

λ̄(z) = 0.0367 − 1.330 × 10−3z − 7.015 × 10−5z2

+ 5.166 × 10−6z3, (20)

and

σ̄(z) = 0.0429 − 4.819 × 10−4z − 3.381 × 10−4z2

+ 1.733 × 10−5z3. (21)

While it is well known that dependences of spin with
halo masses are somehow weak (Macciò et al. 2007; Bett
et al. 2007), for small objects this is not verified yet. There-
fore analogously to the shape distribution, in figure 5 we
show the contour levels of the halo spin as a function of
total halo mass for z = 16 and 11. Assuming a power law
λ ∝ Mα, gives as best fit

〈λ〉(z) = ζλ

„

M
h−1M"

«αλ

, (22)

αλ = −1.64 × 102 + 4.97 × 101z − 5.60z2

+ 2.78 × 10−1z3 − 5.16 × 10−3z4,

ζλ = 4.056 − 0.993z + 0.045z2 − 0.004z3.

The slope αλ evolves from −0.023 to 0.012 at z = 16-11
respectively. While both values a consistent with 0, we found
even a weaker dependence for lower values of redshift.

3 The mean and variance of lognormal distribution are given by

λ̄ = eλ0+σ2
0/2 and σ̄2 = eσ2

0+2λ0(eσ2
0 − 1).
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Figure 4. Cumulative distribution function of dark matter spin
compared with theoretical distributions at z = 16. Lognormal,
black line, beta, red dashed line, Weibull, orange dotted line,
Gamma, dot-dashed purple line. BC: this plot might actu-

ally be skipped and just mentioned in words...I’m not

sure, let’s see what Andrea suggests

5 CONNECTION WITH POP III INITIAL

MASS FUNCTION

The IMF is usually defined as a segmented power-law or a
log-normal type mass distribution (Kroupa 2001; Chabrier
2003). Both definitions are correlated by

dN ∝ m−αdm or dN ∝ mΓd(log m), (23)

where Γ = −(α−1) (Bonnell et al. 2007). The Salpeter slope
(Salpeter 1955) is given by α = 2.35 or Γ = −1.35. The
standard theory for the formation of Pop III stars predicts
an IMF dominated by high-mass stars, in contrast to the
present IMF of Pop II/I stars, which has a preference for
lower masses.

One of the important ingredients for the determination
of the IMF is the typical rotation of the gas. Extreme ul-
traviolet radiation from the protostar can ionize infalling
neutral gas, creating an H ii region whose expansion reduce
significantly the accretion of gas to the star. The radiation
would also destroy molecules and inhibit star formation in
the surrounding as well, affecting not only accretion onto
the central source, but also more distant protostellar cores
(see e.g. Ricotti et al. 2002; Ahn & Shapiro 2007; Whalen &
Norman 2008; Petkova & Maio 2012). While such expansion
is facilitated by protostellar cores with higher rotation, for
lower rotation case, there is an increment of the typical fi-
nal stellar mass. This occur because the gas density remains
high in the accretion envelope in the polar directions for the
same stellar mass. In the following we will make a simple
estimative for the expected Pop III IMF based on a combi-
nation of results from our simulations and the semi-analytic
prescription described in MT08. In addition to studying the
dependence of final stellar mass on several radiative feed-
back processes such as photodissociation of H2, Lyman-α
radiation pressure, formation and expansion of H ii regions,
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In the following we discuss the possibility to connect the host halo properties to the 
typical mass scale of the collapsed protostar. 

It is important to keep in mind that all results presented hereafter rely on the best 
available semi-analytical model to translate the angular momentum distribution into a 
corresponding stellar IMF. 

Despite such limitation, our approach provides the best way to statistically analyze a 
large sample of simulated halos, which could not be performed otherwise.

Connection with PopIII IMF
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Deciphering the Ancient Universe with Gamma-Ray Bursts @ Kyoto TERRSA2010/4/22 /11

Population III Stars
First stars in the Universe

Metal free 

End of ``Dark Age’’

Relation to reionization

No observations so far

3

http://imagine.gsfc.nasa.gov/docs/sats_n_data/satellites/jwst_darkages.html

GRBs from Pop III stars are 
expected to be observable!

de Souza, R. S., et al. 2011, 2012a, 2012b
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What do we know about Pop III IMF?

Abel et al. 2002 
Omukai & Palla 2003
 Yoshida et al. 2006

Until recently...
Predominantely massive: 
> 100 solar masses

Hosokawa et al., 2011, 
Clark et al., 2011,
Stacy et al., 2012,
Greif et al.,  2012

Accretion disks that build up around Population III stars are strongly 
susceptible to fragmentation and that the first stars should therefore form 
in clusters rather than in isolation.

Results far from being conclusive 

Even more recently...

10

MH-1

2000 AU  |  tSF + 1000 yr

MH-2 MH-3

MH-4 MH-5

8 10 12 14

log nH [cm-3]

Fig. 8.— The central 2000AU after 1000 yr of continued fragmentation and accretion. Black dots, crosses and stars denote protostars with
masses below 1M!, between 1M! and 3M!, and above 3M!. A relatively rich protostellar cluster with a range of masses has survived
in each case. In a few minihalos, low-mass protostars have been ejected out of the central gas cloud, such that they are no longer visible
here. In simulation MH-2, two independent clumps have collapsed almost simultaneously and formed their own clusters before eventually
merging (see also Figure 6).

per Jeans length. Runs with 4, 16, and 64
zones per Jeans length are indistinguishable
in all mass-weighted radial profiles of phys-
ical quantities. No change in the angular mo-
mentum profiles could be found, suggesting
negligible numerical viscosity effects on an-
gular momentum transport. A further refine-
ment criterion that ensured the local cooling
time scale to be longer than the local Courant
time also gave identical results. This latter
test checked that any thermally unstable re-
gion was identified. The simulation follows
the nonequilibrium chemistry of the dominant
nine species (H, H!, H–, e–, He, He!, He2!,
H2, and H2

!) in primordial gas. Furthermore,
the radiative losses from atomic and molecular
line cooling, Compton cooling, and heating of
free electrons by the cosmic background radia-
tion are appropriately treated in the optically
thin limit (17, 18). To extend our previous
studies to higher densities, we made three es-
sential modifications to the code. First, we im-
plemented the three-body molecular hydrogen
formation process k3b (H ! H ! H3H2 ! H)
in the chemical rate equations. For temperatures
below 300 K, we fit to the data of Orel (19) to
get k3b " 1.3 # 10$32(T/300 K)$0.38 cm6 s$1.

Above 300 K, we then matched k3b continuous-
ly to a power law (4), k3b " 1.3 # 10$32(T/300
K)$1 cm6 s$1. Second, we introduced a vari-
able adiabatic index for the gas (20). The dis-
sipative component (baryons) may collapse to
much higher densities than the collisionless
component (DM). Third, we smoothed the DM
particles with a Gaussian of width 0.05 pc for
grids with cells smaller than this length. This
smoothing is done to avoid artificial heating of
the baryons (cooling for the DM) once the gas
density becomes much larger than the local DM
density because of the discrete sampling of the
DM potential by particles. At this scale, the
enclosed gas mass substantially exceeds the
enclosed DM mass and hence dominates the
potential.

The standard message passing library
(MPI) was used to implement domain decom-
position on the individual levels of the grid
hierarchy as a parallelization strategy. The
code was run in parallel on 16 processors of
the SGI Origin2000 supercomputer at the
National Center for Supercomputing Appli-
cations at the University of Illinois at Urbana-
Champaign.

We stop the simulation at a time when the

molecular cooling lines reach an optical depth
of 10 at line center because our numerical meth-
od cannot treat the difficult problem of time-
dependent radiative line transfer in multiple
dimensions. At this time, the code uses %5500
grids on 27 refinement levels with 1.8 # 107 &
2603 computational grid cells. An average grid
therefore contains '153 cells.
Characteristic mass scales. Our simu-

lations (Figs. 1 and 2) identify at least four
characteristic mass scales. From the outside
going in, one observes infall and accretion
onto the pregalactic halo with a total mass of
7 # 105 MJ, consistent with previous studies
[see (5, 6, 8, 21, 22) for discussion and
references].

At a mass scale of about 4000 MJ (r ' 10
pc), rapid cooling and infall is observed. This
is accompanied by the first of three valleys in
the radial velocity distribution (Fig. 2E). The
temperature drops and the molecular hydro-
gen fraction increases. It is here, at number
densities of '10 cm$3, that the high-redshift
analog of a molecular cloud is formed. Al-
though the molecular mass fraction is not
even 0.1%, it is sufficient to cool the gas
rapidly down to '200 K. The gas cannot cool

Fig. 1. Overview of the
evolution and collapse
forming a primordial
star in theUniverse. The
top row shows projec-
tions of the gas density
of one-thousandth of
the simulation volume
approximately centered
at the pregalactic object
within which the star is
formed. The four pro-
jections from left to
right are taken at red-
shifts 100, 24, 20.4, and
18.2, respectively. The
pregalactic objects form
from very small density
fluctuations and contin-
uously merge to form
larger objects. The mid-
dle and bottom rows
show thin slices through
the gas density and
temperature at the final
simulation output. The
leftmost panels are on
the scale of the simula-
tion volume, '6 kpc
(proper) (45). The pan-
els to the right zoom in
toward the forming star
and have side lengths of
600 pc, 6 pc, and 0.06
pc (12,000 astronomi-
cal units). The color
maps (going from black
to blue, green, red, and yellow) are logarithmic, and the associated values were
adjusted considerably to visualize the '17 orders of magnitude in density
covered by these simulations. In the left panels, the larger scale structures of
filaments and sheets are seen. At their intersections, a pregalactic object of
'106 MJ is formed. The temperature slice (second panel, bottom row) shows
how the gas shock heats as it falls into the pregalactic object. After passing the

accretion shock, the material forms hydrogen molecules and starts to cool. The
cooling material accumulates at the center of the object and forms the high-
redshift molecular cloud analog (third panel from the right), which is dense and
cold (T' 200 K). Deep within the molecular cloud, a core of'100 MJ, a few
hundred K warmer, is formed (right panel) within which a 1 MJ protostar is
formed (yellow region in the right panel of the middle row).

R E S E A R C H A R T I C L E

4 JANUARY 2002 VOL 295 SCIENCE www.sciencemag.org94
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Population III stars mass

Key factor: rotation of the protostellar  core

McKee & Tan (2008)

Semi-analytic model:
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Fig. S1: Evolution of accretion rates onto the protostar with different α-parameters for angular momentum
transport. The blue, red, and green curves depict the results with α0 = 1, 0.6, and 0.3 in equation (20),
respectively. The magenta curves display the evolution with the initial angular momentum reduced to
30% of the fiducial value. For each case the solid and dashed lines represent the evolution with and
without radiative feedback from the protostar, respectively. The red filled squares represent the no-
feedback case with α0 = 0.6 doubling the spatial resolution in the central region of R < 240 AU (also see
Sec. 2).

22

Hosokawa et al. 2012

22

Fig. 10.— Feedback-limited accretion: effect of rotation. The fiducial model (fKep = 0.5, K ′ = 1, Ti,4 = 2.5 K) shown in Fig. 8 is compared
to models in which only the rotation parameter fKep has been changed: fKep = 0.0625, 0.125, 0.25, 0.75. Smaller rotation parameters result
in higher polar gas densities in the infall envelope and thus delayed H II region breakout (Fig. 5). However for fKep ! 0.25 this has relatively
little effect on the final mass, which is set by disk photoevaporation (note the convergence of the fKep = 0.25, 0.5, 0.75 models). At smaller
rotation parameters the process of H II region breakout plays an important role in setting the mass scale at which the accretion rate is
truncated to be smaller than the photoevaporative mass loss rate.

and it remains to be determined whether this limits the final mass of the star; e.g., Yorke & Sonnhalter (2002) find that
it does, whereas Krumholz et al. (2005a) have not found evidence that it does. Dust also affects the evolution of H II

regions, absorbing a significant fraction of the ionizing photons in dense H II regions (Spitzer 1978), thereby reducing the

Table 1

Mass Scales of Population III.1 Protostellar Feedback

K ′ fKep Ti/(104 K) m∗,pb (M#)a m∗,eb (M#)b m∗,evap (M#)c

1 0.5 2.5 45.3 50.4 137d

1 0.75 2.5 37 41 137
1 0.25 2.5 68 81 143
1 0.125 2.5 106 170 173
1 0.0626 2.5 182 330e 256
1 0.5 5.0 35 38 120
1 0.25 5.0 53.0 61 125

0.5 0.5 2.5 23.0 24.5 57
2.0 0.5 2.5 85 87 321

aMass scale of H II region polar breakout.

bMass scale of H II region near-equatorial breakout.

cMass scale of disk photoevaporation limited accretion.

dFiducial model.
eThis mass is greater than m∗,evap in this case because it is calculated without allowing

for a reduction in ṁ∗ during the evolution due to polar H II region breakout.

Radiation-hydrodynamics simulations

where ρz,ev is the gas density at (R,Z) = (0, Rev). We suppose that the HII region is quenched inside
the evacuation zone when the stellar EUV luminosity SEUV is less than the consumption rate SEUV,ev.
We do not solve the EUV radiative transfer for such cases. After SEUV exceeds SEUV,ev, we remove the
limit of SEUV,ev and assume that the EUV luminosity from the sink is SEUV.

We only marginally resolve the evacuation zone with the current grid resolution. The estimated value
of SEUV,ev depends on the grid size without resolving Rg,HII, because free-fall flow is valid only inside
of Rg,HII. For test calculations with a 2× coarser innermost grid around the protostar, formation of the
HII region begins for a bit higher stellar mass (by a few 10%). Moreover, the flow structure within the
evacuation zone could be complex. For instance, the protostellar outflow might be launched from the
innermost part of the disk (50) with the help of magnetic field generated by dynamo amplification (51,52).
This outflow would help the breakout of the HII region by clearing out materials close to the star in the
polar directions. However, the evolution should depend on the detailed density structure in the outflow-
launching region, which controls the EUV consumption rate.

2 Simulation Setup

As the initial condition of our calculation, we assume the structure of a dense core in the run-away
collapse from the cosmological simulation by (6). The calculation by (6) followed the entire evolution
from the cosmological initial condition to the birth of a primordial protostar under the standard ΛCDM
cosmology. A small protostar of M∗ " 0.01 M" forms at 1020 cm−3 as a result of the run-away collapse
of a dense primordial-gas core at the cosmological redshift z = 14. Specifically, we take the central 0.3 pc
cube around the density peak when the maximum density is 106 cm−3 as our initial condition. We reduce
the 3D data to an axisymmetric 2D distribution by averaging over azimuthal angles. Our simulation box
contains the total gas mass of " 300 M".

The numbers of the grid cells are initially NZ×NR = 42×42, including 2 ghost cells in each direction.
After we start our axisymmetric calculation, the dense core experiences continued gravitational collapse.
We increase the grid resolution for the central collapsing region by successively adding finer nested grids
as needed. With this nested-grid technique, we always resolve the minimum Jeans length by tens of
grid cells. The increase of the grid-level is limited up to 8 owing to computational cost for following
the subsequent accretion phase until the final stellar mass is fixed. We terminate the calculation of the
run-away collapse when the minimum Jeans length becomes too short to be resolved with the finest grids.
At this point we create a sink cell at the origin and calculate the subsequent accretion phase as described
in Sec. 1. The central density at this moment is " 1012 cm−3, and the cell size at the finest grid-level is
" 12 AU.

This recipe enables us to smoothly connect the 3D cosmological simulation using the particle method
to a 2D (axial symmetry assumed) local simulation using the nested-grid method. We have confirmed
that the evolution in our 2D calculation is reasonably consistent with the 3D results after the maximum
density exceeds 106 cm−3. For example, the upper panel of Figure S3 shows a comparison of the angular-
momentum profiles for the 3D and 2D calculations using a parameter,

fKep(Mr) ≡
Vφ,r

VKep,r
, Vφ,r =

lr
r
, VKep,r =

√

GMr

r
, (31)

where Mr is the enclosed mass within radius r, and lr is specific angular momentum averaged over the
spherical shell whose radius is r. The profile for the 2D simulation is within 20 % offset from that in the
3D case taken from (6).

Although most of our simulations were done with the settings described above, we also calculated
early evolution, turning off the stellar feedback, with the higher maximum grid-level of 9. The spatial
resolution for R < 240 AU is doubled in this case and size of the finest cell is " 6 AU. Figure S1 shows the
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Typical rotation distribution and Pop III IMF

8 R. S. de Souza, B. Ciardi, U. Maio, A. Ferrara
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Figure 5. Distribution of log〈fkep〉 at z =16 (solid blue line) and
11 (dashed green).

IMF, at least as long as we assume the MT08 feedback mod-
els to be correct. However, it is important to emphasize that
the gas rotation is also affected by thermal heating from
feedback mechanisms, which are expected to be stronger for
PopIII stars and in low mass halos, as the ones we are deal-
ing with. In addition, simulations (e.g. Tornatore et al. 2007;
Maio et al. 2010, 2011) show that it is common to have mul-
tiple star formation sites within the same halo, with a com-
bination of PopIII and PopII/I stars. This means that it is
not straightforward nor trivial to assign a single PopIII IMF
to a halo.

With the above caveats in mind, we come to the some-
what surprising conclusion that, although on a protostellar
basis radiative feedback acting on baryons might be the key
factor in determining the mass of the first stars, it is the an-

gular momentum distribution of the dark matter halos that

controls the build-up of the IMF (see also Schroyen et al.
2011). This process might work in the simple way outlined
here as long as there is a one-to-one correlation between
the halo and the protostellar core angular momentum and
it might break down in larger galaxies in which momentum
is dissipated via tidal torques and/or shocks arising from
the interaction among different cores or galactic-scale dy-
namical instabilities. We reiterate that all our calculations
include the back-reaction of baryons on the dark matter,
and hence they should provide a robust description of the
total matter dynamics in a halo.

6 SUMMARY

Our study, following the evolution of dark matter and bary-
onic physics in cosmological simulations, makes possible to
study the statistical properties of the high-z, low mass halos
that likely hosted the first stars. In addition such simula-
tions include a large number of physical processes (PopIII
and PopII/I star formation, metal enrichment, gas cooling
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Figure 6. PopIII typical mass distribution for model MT1 (top
panel) and MT2 (bottom panel) at redshift z =16 (blue solid
line), 15 (orange dashed), 14 (red dotted), 13 (black dashed-dot),
12 (brown long-dashed), and 11 (green long dashed-dot).

from resonant and fine-structure lines and feedback effects)
and a detailed chemical network following the abundances
of key species (e−, H, H+, H−, He, He+, He++, H2, H

+
2 , D,

D+, HD, HeH+).
In this work we have mostly concentrated on the sta-

tistical analysis of two important halo properties, i.e. spin
and shape. As these parameters, governing the overall evo-
lution of protostellar cloud collapse, are predicted by mod-
ern PopIII formation theories to be related to the mass of
the first stars forming in these systems, we then discuss the
implications of our findings for the PopIII IMF. Our main
results can be summarized as follows:

• In the entire redshift range considered (11 < z < 16)

8 R. S. de Souza, B. Ciardi, U. Maio, A. Ferrara

z = 16 z = 11

−3 −2.5 −2 −1.5 −1 −0.5

0

0 0.5

0.
2

0.
4

0.
6

log 〈fkep〉

P
(l
og

〈f
k
e
p
〉)

Figure 5. Distribution of log〈fkep〉 at z =16 (solid blue line) and
11 (dashed green).

IMF, at least as long as we assume the MT08 feedback mod-
els to be correct. However, it is important to emphasize that
the gas rotation is also affected by thermal heating from
feedback mechanisms, which are expected to be stronger for
PopIII stars and in low mass halos, as the ones we are deal-
ing with. In addition, simulations (e.g. Tornatore et al. 2007;
Maio et al. 2010, 2011) show that it is common to have mul-
tiple star formation sites within the same halo, with a com-
bination of PopIII and PopII/I stars. This means that it is
not straightforward nor trivial to assign a single PopIII IMF
to a halo.

With the above caveats in mind, we come to the some-
what surprising conclusion that, although on a protostellar
basis radiative feedback acting on baryons might be the key
factor in determining the mass of the first stars, it is the an-

gular momentum distribution of the dark matter halos that

controls the build-up of the IMF (see also Schroyen et al.
2011). This process might work in the simple way outlined
here as long as there is a one-to-one correlation between
the halo and the protostellar core angular momentum and
it might break down in larger galaxies in which momentum
is dissipated via tidal torques and/or shocks arising from
the interaction among different cores or galactic-scale dy-
namical instabilities. We reiterate that all our calculations
include the back-reaction of baryons on the dark matter,
and hence they should provide a robust description of the
total matter dynamics in a halo.

6 SUMMARY

Our study, following the evolution of dark matter and bary-
onic physics in cosmological simulations, makes possible to
study the statistical properties of the high-z, low mass halos
that likely hosted the first stars. In addition such simula-
tions include a large number of physical processes (PopIII
and PopII/I star formation, metal enrichment, gas cooling
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from resonant and fine-structure lines and feedback effects)
and a detailed chemical network following the abundances
of key species (e−, H, H+, H−, He, He+, He++, H2, H

+
2 , D,

D+, HD, HeH+).
In this work we have mostly concentrated on the sta-

tistical analysis of two important halo properties, i.e. spin
and shape. As these parameters, governing the overall evo-
lution of protostellar cloud collapse, are predicted by mod-
ern PopIII formation theories to be related to the mass of
the first stars forming in these systems, we then discuss the
implications of our findings for the PopIII IMF. Our main
results can be summarized as follows:

• In the entire redshift range considered (11 < z < 16)

Feedback 
model

At z= 16 the IMF tends to closely track the lognormal distribution imprinted by the rotation properties of the halos.

Depending on the feedback model, though, the distribution can be centered at ≈ 65M⊙  or ≈ 140M⊙  

At later times, model MT1 tends to evolve into a bimodal distribution with a second prominent peak located at 35 − 40M⊙ in addition to the initial one. 

The bimodality comes from the non-linear connection between rotation and mass scale. 

It is important to notice that the comparisons are done by collecting 
different dark matter and gas particles of the same halo, thus fully 
accounting for the back-reaction of baryons on the parent dark 
matter distribution. 
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Summary
High-z haloes are less spherical, with an average sphericity ⟨s⟩ ∼ 0.3±0.1, and more oblate than low-z haloes. 

Larger halos in the simulation tend to be both more spherical and prolate.

The spin distribution for both gas and dark matter inside these small haloes can be well represented by a 
lognormal function, in accordance with previous results. The dark matter component dominates the general 
behavior of total halo spin distribution for for higher-z, while for lower redshifts both components track each 
other almost perfectly, as a consequence of a longer time interval available for momentum redistribution between 
the two components.

The spin distribution shows a weak dependence with halo mass. With a slightly stronger dependence for 
higher redshifts.

According to most recent theories of PopIII star formation, rotation is the key factor in determining their final 
mass. Using the results of two feedback models (MT1 and MT2) by McKee & Tan (2008) and mapping our halo 
spin distribution into a PopIII IMF, we find that at high-z the IMF tends to closely track the spin lognormal 
distribution; depending on the feedback model, though, the distribution can be centered at ≈ 65M⊙ (MT1) or ≈ 
140M⊙ (MT2). At later times, model MT1 tends to evolve into a bimodal distribution with a second prominent 
peak located at 35 − 40M⊙, as a result of the non-linear relation between rotation and halo mass.
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Message to take home
Although on a protostellar basis radiative feedback acting on baryons might be the 
key factor in determining the mass of the first stars, it is the angular momentum 
distribution of the dark matter halos that controls the build-up of the IMF 

While the PopIII IMF is still highly debated  the present study offers an intriguing 
indication that the IMF of the first stars might be tied and controlled by the 
properties of their parent halos, thus linking in a novel way large scale structure 
and early star formation. 

If this is indeed the case, our suggestion could lead to clear and testable predictions 
(e.g. PISN rates, abundance of pure PopIII galaxies, metal abundance patterns in 
the IGM and low-mass stars to mention a few) for the number, properties and 
cosmic evolution of these pristine stellar systems.

quinta-feira, 1 de novembro de 12


