High-z cosmological structures and reionization

llian T. lliev University of Sussex

with

Garrelt Mellema (Stockholm), Paul Shapiro (Austin), Yi Mao (Paris), Kyungjin Ahn (Chosun), William Watson (Sussex), Stefan Gottloeber (Potsdam), Gustavo Yepes (Madrid) and others

Progress of reionization: 3D view

Large-Scale Simulations of Reionization

N-body: CubeP³M (Harnois-Deraps, et al. 2012)
3072³-5488³ particles (29 to 165 billion)
density slices
velocity slices
halo catalogues-sources
Scales well at least up to 21,952 cores

114-425/h Mpc (CubeP³M) resolving 10⁸ -10⁹M_{solar} halos up to 120 x 10⁶ sources 50-100 dens. snapshots simple source models sub-grid clumping no hydro – large scales. C²-Ray code (Mellema, et al. 2006) •radiative transfer •noneq. chemistry •precise •highly efficient •coupled to gasdynamics •massively parallel (excellent scaling to 40,000+ cores).

Coupled to hydro

Code scaling

(lliev et al. 2012, Harnois-Deraps et al. 2012)

The Formation of Early Cosmic Structures Iliev, et al. 2006a, MNRAS, 369, 1885; Iliev et al. ArXiv1107.4772; and in prep.)

425/h Mpc box @ z=6 5488³ particles (165 billion), 10,976³ cells, P³M simulation density=violet, halos=blue 41.5x41.5 Mpc zoomed slice

Halos $10^9 \text{ M}_{\text{solar}}$ and above resolved. First halos form at z~26; 176 million halos by z=2.6)

Volume comparable to the FOV of EoR radio surveys like LOFAR

All atomically-cooling halos $(>10^8 M_{solar})$ are in the RT $(10^8-10^9 M_{solar} \text{ modelled}$ sub-grid)

Simulation ran at Texas Advanced Computing Facility on 10,988-21,976 cores. The Formation of Early Cosmic Structures: The Very Small Scales

20/h Mpc box @ z=8, zoom 5488³ particles (165 billion), 10,976³ cells, P³M simulation

Resolves all halos down to smal minihalos $(10^5 M_{solar})$.

Structures are highly biased Extend to extremely small scales (resolution of this simulation is 182 pc!)

First halos form at z=43. 112+ million halos at z=8.

Very useful for modelling the effects of small-scale structure and 21-cm absorption, etc..

(Watson et al. In prep.)

Simulation ran at Texas Advanced Computing Center on 10,976-21,952 cores. The Formation of Early Cosmic Structures: The Very Large Scales

JUBILEE project (S. Gottloeber, G. Yepes, J. Diego, W. Watson and others) 6/h Gpc box @ z=0 6000³ particles (216 billion), 12,000³ cells, P³M simulation

Volume comparable to the observable universe. Resolves all halos above $\sim 2 \times 10^{12} M_{solar}$).

Rich statistics: First halos form at z>10, over 350 million halos at z=0, 8.5 million galaxy clusters at z=0.

Useful for studies of statistics and clustering of very massive, rare sources, as well as modelling of galaxy surveys and ISW. (lliev et al., in prep.)

1.5 Gpc/h Simulation ran on JUROPA at Juelich Supercomputing Center on 8000 cores.

200 Mpc/h

Halo mass function

(Watson et al., in prep.) Halo multiplicity function:

$$f(\sigma,z) \equiv rac{M}{
ho_0(z)} rac{dN(M,z)}{d {
m ln} \sigma^{-1}}$$

Fitting formula (e.g. Tinker et al. 2008):

$$f(\sigma) = A\left[\left(\frac{\beta}{\sigma}\right)^{\alpha} + 1\right]e^{-\gamma/\sigma^2}$$

Three approaches to halo finding tested: FOF (Gadget), AHF, and CPMSO (CubeP³M).

Halo mass function (Watson et al., in prep.) Halo multiplicity function:

$$f(\sigma,z)\equiv rac{M}{
ho_0(z)}rac{dN(M,z)}{d{
m ln}\sigma^{-1}}$$

Fitting formula (e.g. Tinker et al. 2008):

$$f(\sigma) = A\left[\left(\frac{\beta}{\sigma}\right)^{\alpha} + 1\right]e^{-\gamma/\sigma^2}$$

Three approaches to halo finding tested: FOF (Gadget), AHF, and CPMSO (CubeP³M).

Simulation suite

(Watson et al., in prep.)

Box Size	N_{part}	Mesh	Resolution	$m_{particle}$	$M_{halo,min}$	$z_{ m in}$	$\mathcal{P}(k)_{max}$	δ^{rms}_{in}	$z_{ m firsthalo}$
11.4 h^{-1} Mpc	3072^{3}	6144^{3}	$0.18 \ h^{-1} m kpc$	$5.19\times10^3~M_{\odot}$	$1.04\times 10^5~M_{\odot}$	300	$2.0 imes 10^{-5}$	0.074	41
$20 \ h^{-1}{ m Mpc}$	5488^{3}	10976^{3}	$0.18 \ h^{-1}{ m kpc}$	$5.19 imes 10^3 \ \mathrm{M}_{\odot}$	$1.04\times 10^5~M_\odot$	300	$2.0 imes 10^{-5}$	0.090	44
114 h^{-1} Mpc	3072^{3}	6144^{3}	1.86 $h^{-1}{ m kpc}$	$5.47 imes 10^6 \ \mathrm{M}_{\odot}$	$1.09\times 10^8 \; \rm M_{\odot}$	300	$1.2 imes 10^{-5}$	0.074	30
425 h^{-1} Mpc	5488^{3}	10976^{3}	$3.87 \ h^{-1}{ m kpc}$	$5.27 imes 10^7 \ \mathrm{M}_{\odot}$	$1.05\times 10^9~M_\odot$	300	$9.5 imes10^{-6}$	0.137	25
1000 h^{-1} Mpc	3456^{3}	6912^{3}	14.47 h^{-1} kpc	$2.8\times 10^9~M_\odot$	$5.50\times10^{10}~M_{\odot}$	150	$4.6 imes10^{-4}$	0.011	17
3200 h^{-1} Mpc	4000^{3}	8000^{3}	40.00 $h^{-1}{ m kpc}$	$5.8\times10^{10}~{\rm M}_{\odot}$	$1.16 imes 10^{12} \ \mathrm{M}_{\odot}$	120	$4.5 imes 10^{-4}$	$3.39 imes 10^{-6}$	11
6000 $h^{-1}{ m Mpc}$	6000^{3}	12000^{3}	$50.00 \ h^{-1}{ m kpc}$	$1.07\times 10^{11}~M_{\odot}$	$2.14\times10^{12}~{\rm M}_\odot$	100	$2.8 imes 10^{-5}$	1.22×10^{-7}	11

Halo mass function through the cosmic ages

(Watson et al, in prep.)

FOF: universal shape

SO: redshift- and Omega-dependent

Effect of FOF linking length

(Watson et al., in prep.)

Linking length (II) is a parameter used for defining FOF halos. Typically a fixed value of II=0.2 is used. At higher-z this is not appropriate value and among other issues results in over-linking. Shorter II produces more sensible results.

Halo mass function fit: **CPMSO** (Watson et al., in prep.)

Halo mass function fit: AHF (Watson et al., in prep.)

How rare are halos?

Scales of reionization

607 Mpc

the states

New large-scale EoR simulation

Previous large-scale

3 Mpc

9 Mpc

Typical hydro sim. ~ radio beam

Density fluctuations: power

(lliev et al., in prep.)

Density fluctuations: power

(lliev et al., in prep.)

The high-z halo bias (lliev et al., in prep.)

>Halos at high-z are strongly clustered. ▶ Bias increases fast with halo mass and can reach a thousands in the nonlinear regime. Scale at which bias becomes linear varies significantly with halo mass. Simulations with different resolutions agree farly well in the overlapping mass ranges.

The high-z halo bias: extreme objects

(lliev et al., in prep.)

~750 MW+-size objects resolved at z=8

Those extreme objects, located at the highest density peaks are very highly clustered at these redshifts

z=0 halo bias (Iliev et al, in prep.)

>Halos at z=0 are much less clustered.
>Scale at which bias becomes linear varies significantly with halo mass.

Smallest halos (below M_{*}~5e12) are anti-biased

(b<1), as expected.

Large-scale reionization: movie

Large-scale Structure of Reionization (Iliev et al, in prep.)

z=7.35 $x_{m}\sim0.5$

425 Mpc/h 504³ RT

LOFAR resolution

(lliev et al, in prep.)

 $\delta T (mK)$ at z= 7.48

24.8

18.6

12.4

6.21

0.00093

Reionization history: how big volume is big enough?

Reionization history: how big volume is big enough? (Iliev et al, in prep.)

Reionization history: how big volume is big enough?

lonization history stages

(lliev et al, in prep.)

black: all red: mean density

lonization history stages

(lliev et al, in prep.)

black: all red: mean density

lonization history stages

(lliev et al, in prep.)

black: all red: mean density

Hll region sizes: FOF

(Iliev et al, in prep.)
 Same volume in regions with V<< V_{box}
 Many more large HII regions in the larger box

Early

Middle

Late

HII region sizes: Spherical Average

(lliev et al, in prep.) Same volume in regions with V<< V_{box} Again many more large HII regions in the larger box

Early

Middle

Late

21-cm power spectra: early

(lliev et al, in prep.)

21-cm power spectra: middle

(lliev et al, in prep.)

21-cm power spectra: late

(lliev et al, in prep.)

21-cm fluctuations: rms and skewness

(lliev et al, in prep.)

21-cm non-gaussianity(Iliev et al, in prep.)

RMS convergence with box size

RMS convergence with box size

(Ilievet al in nren)

RMS convergence with box size

Skewness and kurtosis

Redshift-space distortions in the nonlinear regime (Mao et al, in prep.) > In the linear regime the redshifted 21-cm power spectrum can be written as:

$$P_{\Delta T}^{s,\text{lin}}(\mathbf{k},z) = P_{\mu^0}(k,z) + P_{\mu^2}(k,z)\mu_{\mathbf{k}}^2 + P_{\mu^4}(k,z)\mu_{\mathbf{k}}^4$$

$\frac{\mu_{\mathbf{k}} \equiv \mathbf{k} \cdot \mathbf{n} / |\mathbf{k}|}{\text{Astrophysics}} \quad \text{Cosmology}$

This assumes that density, velocity and ionization fields are linear. However, that is generally justified only for the velocity and (at large scales) for density field.

Q: What are the limits of applicability of this approximation?

Redshift-space distortions in the nonlinear regime (Mao et al, in prep.)

 $k [h Mpc^{-1}]$

Contribution of the First Stars to reionization (Ahn et al, 2012)

- New method for including the formation, contribution and suppression of the First Stars in radiative transfer simulations.
- Lyman-Werner bands radiative transfer added.
- Reionization starts much earlier (z~40), is extended in time and its morphology changes significantly.

No First Stars

With First Stars

Observing First Stars with Planck (Ahn et al., 2012)

The effect of First Stars is to both increase τ_{c} and introduce features in the CMB polarization data at large scales (due to the different reionization history) Effect should be detectable with Planck

Observing **First Stars** with Planck (Ahn et al., 2012) **Principal** component analysis shows that effect is detectable with approx. 2– σ confidence level even for fixed τ_{m} if we assume z prior.

Summary

- Structure formation at high-z is quite different from later times
 different halo mass function, higher halo clustering.
- FOF halo mass function has universal shape for fixed linking length, at all scales and redshifts.
- Spherical overdensity mass functions are redshift- and Omegadependent.
- Very long wavelength density fluctuations increase reionization patchiness and 21-cm signal appreciably.
- Reionization history and patchiness converge at scales above 100 Mpc/h, but vary significantly for smaller volumes, even if they are at mean density.
 - μ -decomposition approximation is valid only during the early stages of reionization.

Effects of the First Stars should be directly detectable with Planck \rightarrow first direct observation of the Cosmic Dawn?