Non-Gaussianity from residual foreground contamination in the WMAP data

Pravabati Chingangbam

Indian Institute of Astrophysics, Bangalore

With Changbom Park, arXiv:1210.2250 [astro-ph.CO]

 5^{th} KIAS workshop on stucture formation and cosmology, 2012

CMB data from WMAP

- Observed signal = true CMB + foreground signal.
- Foreground signal is estimated and then subtracted.
- Galactic region is masked. KQ75 Galactic mask provided by WMAP.
- Locations of extra-Galactic point sources that are identified are also masked.
 - PS1 : Gold et al. (2011), 471 sources.
 - PS2 : Scodeller, Hansen and Marinucci (2012), 1116 sources.
 - PS3 : Scodeller, Hansen and Marinucci (2012), 2102 sources.

$$f^{\text{cleaned}} = f^{\text{obs}} - f^{\text{appfg}}$$

• Accurate estimation and subtraction of the foreground is crucial for extracting cosmological information. κ_{omatsu et al.} (2011)

Minkowski Functionals and non-Gaussian deviations

Minkowski Functionals for Gaussian random fields Tomita (1986)

$$\nu \equiv f/\sigma_0, \qquad \sigma_0 \equiv \sqrt{\langle f^2 \rangle}$$

$$V_0 = \frac{1}{2} \operatorname{erfc} (\nu/\sqrt{2})$$

$$V_1 = A_1 \ e^{-\nu^2/2}, \qquad A_1 \sim \frac{\sigma_1}{\sigma_0}, \quad \sigma_1 \equiv \sqrt{\langle |\nabla f|^2 \rangle}$$

$$V_2 = A_2 \ \nu \ e^{-\nu^2/2}, \qquad A_2 \sim \left(\frac{\sigma_1}{\sigma_0}\right)^2.$$

Quantify non-Gaussian deviations as $\Delta V_i \equiv V_i^{NG} - V_i^{G}$.

Minkowski Functionals from WMAP 7 years data

Residual foreground contamination

- Is there small but statistically significant residual foreground contamination present in f^{cleaned}?
- If it is present, how will it show up in the Minkowski Functionals? Can a part of the non-Gaussian deviation of the MFs of the WMAP data come from such contamination?

WMAP data provides both $f^{\rm obs}$ and $f^{\rm cleaned}$. By subtracting them we can obtain $f^{\rm appfg}$.

Basic premise: If there is insignificant residual foreground in the cleaned CMB signal, we should find negligibly small correlation between the cleaned CMB and foreground fields.

Residual foreground contamination

• Define peak field:

$$f^{\text{peak}} \equiv \left(f^{\text{appfg},\theta_s} - f^{\text{appfg},3\theta_s} \right) - \left(< f^{\text{appfg},\theta_s} \right) - \left\langle f^{\text{appfg},3\theta_s} > \right),$$

The peak field captures the smaller scale fluctuations of the foreground field.

• Rescale:
$$\nu^{\text{cleaned}}(i) \equiv \frac{f^{\text{cleaned}}(i)}{\sigma^{\text{cleaned}}}, \quad \nu^{\text{peak}}(i) \equiv \frac{f^{\text{peak}}(i)}{\sigma^{\text{peak}}},$$

• Calculate the correlation:

$$r_c \equiv < \nu^{\text{cleaned}} \, \nu^{\text{peak}} >_{\theta_s}$$

Correlation between cleaned CMB and foreground fields

- We calculate r_c after applying PS1, PS2 and PS3.
- Chose $\theta_s = 35$ arcmin.
- Results for PS1:

All unmasked pixels

DA	r_c
Q1	2.55×10^{-2}
Q2	2.49×10^{-2}
V1	2.00×10^{-2}
V2	1.93×10^{-2}
W1	9.47×10^{-3}
W2	7.98×10^{-3}
W3	8.85×10^{-3}
W4	6.34×10^{-3}

Excluding pixels with $\nu^{\rm peak} > 3$

DA	r_c
Q1	1.80×10^{-2}
Q2	1.75×10^{-2}
V1	1.65×10^{-2}
V2	1.60×10^{-2}
W1	8.54×10^{-3}
W2	8.29×10^{-3}
W3	6.74×10^{-3}
W4	6.93×10^{-3}

• Boundary effects checked by staying further away from the boundaries. Results are more or less unchanged.

Statistical significance of the observed correlation

- Simulate 1000 Gaussian CMB maps with WMAP 7 years parameter values.
- Add instrumental effects: pixel window function, beam profiles and noise characteristics for each differential assembly.
- Calculate their correlation with the peak field. We should expect negligibly small correlation.
- **③** Count the number of maps having $r > r_c$ simultaneously for all channels, $N_{\rm all}$.

ALL unmasked pixels included: $N_{\rm all} = 0$.

Excluding pixels with $\nu^{\text{peak}} > 3$: $N_{\text{all}} = 5$.

Significance significance of the observed correlation

- Count the number of maps having $r > r_c$ for individual DAs: N.
 - All unmasked pixels

\sim	Excluding	pixels	with	$\nu^{\rm peak}$	>	3
--------	-----------	--------	------	------------------	---	---

Channel	N
Q1	0
Q2	0
V1	4
V2	6
W1	108
W2	158
W3	131
W4	208

Channel	N
Q1	5
Q2	6
V1	98
V2	105
W1	262
W2	269
W3	305
W4	297

Summary

- The correlations between the cleaned CMB and peak fields are ALL positive for all the DAs.
- These correlations are statistically significant.
- Both the correlation and statistical significance values drop when we repeat the calculations for PS2 and PS3.

Minkowski Functionals for the peak fields

- Clearly not Gaussian shape. If a small fraction of $f^{\rm peak}$ contaminates Gaussian map, it will lead to deviation from Gaussian behaviour.
- Add contaminant fraction to the simulated Gaussian maps as

 $f^{\text{contaminated}} = f^G + \epsilon f^{\text{peak}}$

• Measure Minkowski Functionals from the contaminated maps.

Effect of residual foreground contamination

Contaminated Gaussian with $\epsilon\simeq 4.$ Average over 1000 maps.

Visually, there is agreement of the non-Gaussian deviation shapes!

Effect of PS1, PS2 and PS3 MFs for WMAP data

- V₀ is strongly affected by the removal of the larger set of point sources. Hence, not reliable for constraining non-Gaussianity parameters when point sources are not well known.
- V_1 and V_2 are less sensitive to point sources.

Findings

- Small but statistically significant residual foreground contamination present in WMAP data. Q channel has the largest and W has the least.
- For Q and V channels, a big fraction of the contamination comes from pixels where $\nu^{\text{peak}} > 3$.
- 'Good' visual agreement between non-Gaussian deviations of Minkowski Functionals of WMAP data and simulated Gaussian maps to which contaminant fraction is added.
- This suggests that a big component of the observed non-Gaussianity comes from residual foreground contamination.