Cosmology12 @ KIAS

Horizon Run Cosmological N-Body Simulations

Oct 30 – Nov 2, 2012

Juhan Kim, Changbom Park, (Korea Institute for Advanced Study) G. Rossi (Saclay), J. Richard Gott (Princeton), and J. Dubinski (CITA)

Computers for the Horizon Run Simulations

	HR1	HR2 & HR3
Year performed	2007-2008	2010-2011
System used	Tachyon SUN Blade (KISTI)	Tachyon-II SUN Blade (KISTI)
# of nodes	188	3176
Rpeak	24 Tflops	300 Tflops
Processor	AMD Opteron 2GHz (quad)	Intel Xeon 2.93 GHz (quad)
# of CPUs	3,008 cores (16 /node)	25,408 cores (8/node)
Total Memory	6 TB (32GB/node)	76.8 TB (24GB/node)
Total Storage	207 TB (SUN Lustre)	1.1 PB (SUN Lustre)
Network	Infiniband 4x DDR	Infiniband 40G 4x QDR
Occupation of System resources	50%	33%

500 Mpc/h-

KISTI @ http://www.ksc.re.kr

Horizon Runs (computing resources)

Simulation	HR1 (2008)	HR2 (2011)	HR3 (2011)
# of particles	67 Billions (4120 ³)	216 Billions (6000 ³)	375 Billions (7210 ³)
Memory	3.7 TB	9.5 TB	14.5 TB
Wall Clock Time	20 ^d	7 ^d	15 ^d
Total CPU Cores	1648 (52 nodes) (Omp threads=2)	8000 (1000 nodes) (Omp threads=8)	8240 (1030 nodes) (Omp threads=8)
Network	Infiniband DDR	Infiniband QDR	Infiniband QDR
Storage file system	Lustre (100TB)	Lustre (1.1PB)	Lustre (1.1PB)
Time Steps	400	800	600
Total output data	30 TB	200 TB	300 TB

(J. Kim et al. 2009; J. Kim et al. 2011; http://astro.kias.re.kr/Horizon-Run23/)

500 Mpc/h

Horizon Runs (physics)

Simulation	HR1 (2008)	HR2 (2011)	HR3 (2011)
# of particles	4120 ³	6000 ³	7210 ³
Ω_{m} , Ω_{b} , Ω_{Λ}	0.26, 0.044, 0.74	0.26, 0.044, 0.74	0.26, 0.044, 0.74
$n_s^{}$, h, $\sigma_8^{}$	0.96, 72, 0.794	0.96, 72, 0.794	0.96, 72, 0.794
Box size (h ⁻¹ Mpc)	6592	7200	10815
Starting redshift	23	32	27
particle d (h ⁻¹ Mpc)	1.6	1.2	1.5
# of halos at z=0	140 Millions	500 Millions	700 Millions
Minimum halo mas s (M $_{\odot}$ /h)	8.87x10 ¹²	3.74x10 ¹²	7.31x10 ¹²
halo d (h ⁻¹ Mpc)	13.08	9.01	11.97
Initial Linear Power Spectrum	Eisenstein & Hu	CAMB Source	CAMB Source

THE HORIZON RUN 1, 2 & 3 (Kim et al. 2009; Kim et al. 2011) http://astro.kias.re.kr/Horizon-Run23/

Simulations

Initial conditions

Particle displacements and comoving velocities in accordance with the WMAP 5 yr cosmological parameters.

Equations to solve

$$(da/dt)^{2} = 8\pi G\rho_{0}(\Omega_{i}^{-1} - 1 + a(t)^{-1})/3$$

$$\dot{v}_{i} + 2\frac{\dot{a}}{a}v_{i} = -a^{-3}\sum_{i\neq j}\frac{Gm_{j}x_{ij}}{|x_{ij}|^{3}} = a^{-3}F_{i}/m_{i}, v(t) = dx/dt$$

$$\frac{du_{i}}{da} + 2A(a)u_{i} = B(a)F_{i}/m_{i}$$
First order expansion of the symplectic form
$$dx = (2 + \ddot{a}a/\dot{a}^{2}) = 1$$

$$u = \frac{dx}{da}, A(a) = \frac{(2 + aa/a^2)}{2a}, B(a) = \frac{1}{\dot{a}^2 a^3}$$

N-body (GOTPM) code: A PMTree code (Park 1990; Dubinski, Kim, Park et al. 2004)

1. Long range (r>4 pixels, PM) + Short range(Tree) g-forces

Tree generation in each slab & in each cube of (4+4+4)³ pixels

(grid-based oct-sibling tree)

Min. # of particles for tree generation – Direct P² if #(in local cubes) < N_{tree}

2. Memory : ~[11] x words per particle

- * 11 per particle: index², position³, velocity³, work¹, pointer² (or mesh for PM & FFT)
 - structure switching technique: PM particle $\leftarrow \rightarrow$ Tree particle
- * pmparticletype {float4 x,y,z,vx,vy,vz;long8 index} + float4 2*den(fft stuffs)
- * treeparticletype (floa4t x,y,z,vx,vy,vz; long8 index;pointer *next} + float4 work(tree)
- * 4120³ particles = 3.3 TB (2.7 TB if not using the index)
- 3. Simple method to enhance position accuracy using single precision
 - * Typical Method: float4 positions (x,y,z) : ex) r=(0.344543, 6453.33,4567.21)
 - * Advanced Method: float4 shifts (dx,dy,dz) from Lagrangian position (index; x0,y0,z0)

 \rightarrow more accurate position (x0+dx,y0+dy,z0+dz)

ex) r=(0.344543,6453.33457,4567.214356)

Parallelization

- 1. FFT part (FFTW)
 - : Domain slabs of equal(?) thickness

- 2. PM & Tree part
 - : Domain slabs of equal # of tree force interactions & buffer zone particles

The Horizon Run N-Body Simulations

(J. Kim et al. 2009; J. Kim et al. 2011; <u>http://astro.kias.re.kr/Horizon-Run23/</u>)

Needs for Large Cosmological N-body Simulations

1) Study of rare objects like the SGW can be only addressed realistically through m ock surveys in very large simulations.

cf: Park et al. (2012) using HR3.

[Y. Suto 2010, private communication]

- 2) The validity of linear theory, in particular the max wavenumber that linear theory can be used for statistics, can be confirmed only by large N-body simulations. cf: Takahashi et al. Simulations of baryon acoustic oscillations I. Growth of large-scale density fluctuatio ns, MNRAS 389(2008)1675 Nishimichi et al. Modeling Nonlinear Evolution of Baryon Acoustic Oscillation s: Convergence Regime of N-body Simulations and Analytic Models PASJ 61(2009)321
- 3) The covariance between different modes of power spectrum can be only estimat ed by a large number of N-body simulations
- c.f.: Takahashi et al. Simulations of Baryon Acoustic Oscillations. II. Covariance Matrix of the Matter Power Sp ectrum, ApJ 700(2009)479
- 4) There is no good model for redshift-space distortion that can be reliably used for the future dark energy surveys.

c.f., Taruya et al. Nonlinear evolution of baryon acoustic oscillations from improved perturbation theory in real and redshift spaces PRD (2009) 80.123503

as cannot be really modeled without simulations (N-body simulations) (N-body simulations)

Dark halo identification [Kim & Park 2006]

Physically Self-Bound halos/subhalos (isolated, central & satellite halos) Halo centers - local density peaks Gravitationally-bound, tidally-stable halos with >30 particles.

matter – dark halos – galaxies

subHalo-galaxy 1-1 correspondence model

Simulation Outputs

- Mass resolution (M $_{\odot}$ /h):
 - 8.87×10^{12} (HR1), 3.74×10^{12} (HR2), 7.31×10^{12} (HR3)
- For study of redshift evolution
 - Snapshot particle/halo data at z=0,0.5, 1, & 2 (HR2/3)
 - Snapshot particle/halo data at z=0,0.1,0.3,0.5,0.7, & 1 (HR1)
- To simulate BOSS Survey
 - 8/8/27 (HR1/2/3) shallow all-sky past lightcone space data t o z=0.6 (HR1), 0.7(HR2/3)
- To simulate BigBOSS Survey
 - Deep all-sky past lightcone space data to z=1.85 (HR2), 4 (HR3)

Scientific Results [J. Kim et al. 2009]

Correlation functions : Effects of gravitational evolution, halo biasing, z-space distortion

$$G_3(\nu_f) = \frac{1}{(2\pi)^2} \left(\frac{\sigma_1}{\sqrt{3}\sigma_0}\right)^3 e^{-\nu_f^2/2} \times \left(1 - \nu_f^2 + \left[\left(S^{(1)} - S^{(0)}\right)\left(\nu_f^3 - 3\nu_f\right) + \left(S^{(2)} - S^{(0)}\right)\nu_f\right]\sigma_0\right)$$

(Matsubara 2003)

LRG Correlations in BOSS

[Rossi, Park, & Kim 2012]

Deep All-Sky Data

- Deepest past lightcone space data up to z=4 (HR3) & 2 (HR2)
 - All the density power modes are independent.
- Particle & halo data of position, velocity, and mass
- Minimum halo mass: 7.3x10¹² M_☉/h (HR3) & 3.7x10¹² M_☉/h (HR2)
- For the study of
 - S-Z effects (by C.-G. Park, C. Park, J. Kim)
 - Thermal & kinematic SZ effects
 - Cluster X-ray Survey (by M.-S. Kim, J. Kim)
 - Cosmic Far-Infrared Backgrounds (CFIB; by Y.-W. Kang, I. Kim) Surveys
 Simulating DEEP Surveys

[Figure: HR3: projected halo density map]

The Largest Structure

٠

Summary

1.Three large Horizon Run cosmological N-body simulations of the WMAP 5yr cos mological model presented. HR2 and HR3 evolved $6000^3 = 2.16 \times 10^{11}$ and $7210^3 = 3.74 \times 10^{11}$ particles, and span a volume of $(7.200 \text{ h}^{-1} \text{ Gpc})^3$ and $(10.815 \text{ h}^{-1} \text{ Gpc})^3$, re spectively.

2. Made 35 all-sky mock BOSS surveys along the past light cone out to z = 0.7 (HR 2/3)

8 all-sky mock BOSS surveys out to z=0.6 (HR1)

One mock BOSS survey out to z=1.85 (HR2) and 4 (HR3), respectively.

3. Applications of our unprecedented large-volume N-body simulations for a variety of studies in cosmology and astrophysics, ranging from
*physics of NL gravitational evolution, halo biasing, redshift-space distortion,
*test of the concordance model through large-scale rare objects,
*large-scale structure topology,
*baryon acoustic oscillations,
*dark energy and the characterization of the expansion history of the universe,
*galaxy formation science in connection with the SDSS-III BOSS survey.

Thanks!