GOING BEYOND THE KAISER REDSHIFT-SPACE DISTORTION FORMULA: GENERAL RELATIVISTIC EFFECT

JAIYUL YOO

INSTITUTE for THEORETICAL PHYSICS, UNIVERSITY of ZÜRICH

Collaboration with

Nico Hamaus, Uros Seljak, Matias Zaldarriaga

KIAS Workshop on Cosmology, October 29 ~ November 2, 2012

I. INTRODUCTION: GOING BEYOND THE KAISER FORMULA

Motivation

- recent advances in observational cosmology
 - larger sky coverage and higher redshift
 - measurements with higher statistical power
- theoretical predictions
 - sufficiently accurate to describe observations?
 - it is *general relativity*!

I. INTRODUCTION

Relativistic Effect?

- there are *infinitely* many gauge choices
- order one effects on horizon scale!

II. BEYOND THE KAISER FORMULA: GENERAL RELATIVISTIC EFFECT

Observables

- model *observables*, not *unobservable* quantities!
- observables: (physical)
 - observed redshift z_{obs} , position $\hat{n} = (\theta, \phi)$
- *unobservables*: (gauge-dependent)
 redshift z, angular position ŝ = n̂ (δθ, δφ)

• photon geodesic equation (relativistic) $1 + z_{obs} = (1 + z) \left[1 + V(z) - V(0) - \psi(z) + \psi(0) - \int_{0}^{r} dr' (\dot{\psi} - \dot{\phi}) \right].$ $(\delta r, \ \delta \theta, \ \delta \phi)$

Effects on Galaxy Clustering

- construct a galaxy fluctuation field: ightarrow
 - total number of observed galaxies $N_{\rm tot}$
 - observed volume $dV_{\rm obs}$ given $(z_{\rm obs}, \hat{n})$
 - fluctuation field $\delta_{obs} = \frac{n_{obs}}{\langle n_{obs} \rangle} 1$
- relation to *physical* number density:
 - number conservation $N_{\text{tot}} = n_{\text{phy}} dV_{\text{phy}} = n_{\text{obs}} dV_{\text{obs}}$
 - observed number density $n_{\rm obs} = n_{\rm phy} \frac{dV_{\rm phy}}{dV_{\rm obs}}$

Unified Treatment

- observable: $N_{\text{tot}} = n_g^{\text{phy}} dV_{\text{phy}} = n_g^{\text{obs}} dV_{\text{obs}}$ • volume effects: $\frac{dV_{\text{phy}}}{dV_{\text{obs}}}$ • redshift-space distortion: $\frac{\partial z}{\partial z_{\text{obs}}} \simeq \frac{1+z}{H} \frac{\partial V}{\partial r}$
 - lensing magnification:

$$\frac{\overline{\partial z_{\rm obs}}}{\frac{\partial \Omega}{\partial \Omega_{\rm obs}}} \simeq \frac{\overline{H}}{\mu} = 1 - 2 \kappa$$

- source effects:
 - magnification bias: $n_g^{obs}(f_{obs}) \simeq n_g^{phy}(f_{obs}/\mu)$
- complete description of different effects
 - holds in Newtonian & GR descriptions Yoo, PRD, 2009

Physical Volume in 4D

- unified treatment: $N_{\text{tot}} = n_g^{\text{phy}} dV_{\text{phy}} = n_g^{\text{obs}} dV_{\text{obs}}$
- integral of 3-form in 4D spacetime manifold:
 - observables $z_{\rm obs}, \ \theta_{\rm obs}, \ \phi_{\rm obs}$
 - photon geodesic path $x^{a}(\lambda) = \bar{x}^{a}(\lambda) + \delta x^{a}(\lambda)$
 - Sachs-Wolfe and gravitational lensing effects
 - distortion in local Lorentz frame
 - manifestly gauge-invariant

 $N_{\rm tot} = \int \sqrt{-g} \ n_{\rm phy} \ \varepsilon_{abcd} \ u^d \ \frac{\partial x^a}{\partial z_{\rm obs}} \frac{\partial x^b}{\partial \theta_{\rm obs}} \frac{\partial x^c}{\partial \phi_{\rm obs}} \ dz_{\rm obs} \ d\theta_{\rm obs} \ d\phi_{\rm obs}$

Yoo, Fitzpatrick, Zaldarriaga, PRD, 2009

Levi-Civita symbol ε_{abcd} , comoving velocity u^a

Relativistic Formula

standard Kaiser formula: δ_g = b δ_m - ^{1+z}/_H ^{∂V}/_{∂r} = b δ_m + fμ²_kδ_m
general relativistic formula:

$$\delta_{g} = b \, \delta_{m}^{(v)} - e \, \delta z^{(v)} + \alpha_{\chi} + 2 \, \varphi_{\chi} + V - C_{\alpha\beta} \, e^{\alpha} e^{\beta} + 3 \, \delta z_{\chi} + 2 \, \frac{\delta \mathcal{R}}{r} - H \frac{\partial}{\partial z} \left(\frac{\delta z_{\chi}}{\mathcal{H}}\right) - 5p \, \delta \mathcal{D}_{L} - 2 \, \mathcal{K} \, ,$$

it can be computed in *any gauges!*

Yoo, Fitzpatrick, Zaldarriaga 2009 Yoo 2010 Bonvin & Durrer 2011, Challinor & Lewis 2011 Jeong, Schmidt, Hirata 2012, Yoo, Hamaus, Seljak, Zaldarriaga 2012

What are They?

$$\delta_{g} = b \, \delta_{m}^{(v)} - e \, \delta z^{(v)} + \alpha_{\chi} + 2 \, \varphi_{\chi} + V - C_{\alpha\beta} \, e^{\alpha} e^{\beta} + 3 \, \delta z_{\chi} + 2 \, \frac{\delta \mathcal{R}}{r} - H \frac{\partial}{\partial z} \left(\frac{\delta z_{\chi}}{\mathcal{H}}\right) - 5p \, \delta \mathcal{D}_{L} - 2 \, \mathcal{K} \, ,$$

- *conservation* of the number of galaxies
- source effect: $e \ \delta z^{(v)}$, $5p \ \delta \mathcal{D}_L$
- **volume** effect: $\frac{dV_{\rm phy}}{dV_{\rm obs}}$, $dV_{\rm obs} = \frac{r^2(z_{\rm obs})}{H(z_{\rm obs})} dz_{\rm obs}$
- distortions:
 - redshift: $1 + z_{obs} = (1 + z)(1 + \delta z)$, $\delta z = V + \phi + \int_0^r d\tilde{r} \ 2\phi'$ radial position: $\delta \mathcal{R} = -\frac{\delta z}{\mathcal{H}} \int_0^r d\tilde{r} \ 2\phi$

 - angular position: \mathcal{K}
 - luminosity distance: δD_L $D_L(z_{obs}) = \overline{D}_L(z_{obs})(1 + \delta D_L)$

Kaiser Equation

- connection to the general relativistic formula:
 - selection function: $\alpha \equiv \frac{d \ln r^2 \bar{n}_g}{d \ln r} = 2 + \frac{rH}{1+z} (e-3)$ $e = \frac{d \ln \bar{n}_{phy}}{d \ln (1+z)}$
 - line-of-sight velocity: $\mathcal{V} \equiv \frac{1+z}{H} V \simeq \frac{1+z}{H} \delta z_{\chi}$

$$1 + z = (1 + \bar{z})(1 + \delta z)$$

- redshift-space distance: $s \equiv \int_{-\infty}^{z} \frac{dz}{H} = r + \frac{1+z}{H} \delta z \simeq r + \mathcal{V}$
- full Kaiser formula: $n_z(s) d^3s = n_r(r) d^3r$

$$\delta_z = b \,\,\delta_m - \left(\frac{\partial}{\partial r} + \frac{\alpha}{r}\right) \mathcal{V} = b \,\,\delta_m - \frac{1+z}{H} \frac{\partial V}{\partial r} - e \,\,V + 2 \,\,V - \frac{2V}{\mathcal{H}r} + \frac{1+z}{H} \frac{dH}{dz} \,\,V$$

Yoo, Hamaus, Seljak, Zaldarriaga, PRD, 2012

Connection to the Kaiser

- connection to the *general relativistic* formula:
 - Newtonian correspondence is required Hwang, Noh 1999,2005, Chisari & Zaldarriaga 2011
 - velocity is reproduced, *if* <u>luminosity fluctuation is</u> <u>accounted</u>: *important correction (missing)*
 - gravitational redshift-space distortion is cancelled
 - potential contribution is *purely* relativistic
 - validity of the Newtonian theory on horizon scales can only be judged retroactively

Yoo, Hamaus, Seljak, Zaldarriaga, PRD, 2012

III. RESULTS

III. RESULTS

Traditional Analysis

- gravitational potential *P* and velocity *R* terms
- corrections: *negligible*

Breakthrough

• multi-tracer method: eliminate cosmic variance

Seljak 2009, Hamaus, Seljak, Desjacques 2011

 $\delta_1 = b_1 \delta_m , \quad \operatorname{var}(\delta_1) = b_1^2 \sigma_m^2 \qquad \qquad \delta_1 = \frac{b_1}{b_2} , \quad \operatorname{var}\left(\frac{\delta_1}{\delta_2}\right) = 0$ $\delta_2 = b_2 \delta_m , \quad \operatorname{var}(\delta_2) = b_2^2 \sigma_m^2 \qquad \qquad \delta_2 = \frac{b_1}{b_2} , \quad \operatorname{var}\left(\frac{\delta_1}{\delta_2}\right) = 0$

• optimal weighting:

reduce stochasticity between halos and dark matter

Seljak, Hamaus, Desjacques 2009, Hamaus et al. 2010 Hamaus, Seljak, Desjacques 2012

Measuring GR Effects

- optimal weighting, multiple samples
- corrections: *measurable!*

Yoo, Hamaus, Seljak, Zaldarriaga 2012

Wide Angle Effect?

- What is "wide angle" effect?
 - deviation from the distant observer approximation $\mu_1 = \hat{x}_1 \cdot \hat{k}$, $\mu_2 = \hat{x}_2 \cdot \hat{k}$, $\mu = \hat{x} \cdot \hat{k}$ vs $\hat{x}_1 = \hat{x}_2$

• In relativistic context: **P** & **R** not wide angle effect

$$\delta_g = \delta_{\text{Newt}} + \left[\frac{\mathcal{P}}{(k/\mathcal{H})^2} - i\mu_k \frac{\mathcal{R}}{k/\mathcal{H}} \right] \delta_m \qquad \delta_{\text{Newt}} = b \ \delta_m + f\mu_k^2 \delta_m$$

• a few velocity terms are also *missing* in literature

$$\mathcal{R} = f \left[e - \frac{1+z}{H} \frac{dH}{dz} + (5p-2) \left(1 - \frac{1}{\mathcal{H}r} \right) \right]$$
$$\mathcal{P} = ef - \frac{3}{2} \Omega_m(z) \left[e + f - \frac{1+z}{H} \frac{dH}{dz} + (5p-2) \left(2 - \frac{1}{\mathcal{H}r} \right) \right]$$

Impact on Correlation?

• "wide angle" effect in correlation function?

$$\delta_g = \delta_{\text{Newt}} + \left[\frac{\mathcal{P}}{(k/\mathcal{H})^2} - i\mu_k \frac{\mathcal{R}}{k/\mathcal{H}} \right] \delta_m \qquad \delta_{\text{Newt}} = b \ \delta_m + f\mu_k^2 \delta_m$$
$$\mathcal{R} = f \left[e - \frac{1+z}{H} \frac{dH}{dz} + (5p-2) \left(1 - \frac{1}{\mathcal{H}r} \right) \right]$$
$$\mathcal{P} = ef - \frac{3}{2} \Omega_m(z) \left[e + f - \frac{1+z}{H} \frac{dH}{dz} + (5p-2) \left(2 - \frac{1}{\mathcal{H}r} \right) \right]$$

• wide-angle vs distant-observer correlation functions $\langle \delta_1 \delta_2 \rangle = \int \frac{d^3 k}{(2\pi)^3} e^{i \vec{k} \cdot \vec{x}} \left(b + f \mu_1^2 + \frac{\mathcal{P}}{(k/\mathcal{H})^2} - i \mu_1 \frac{\mathcal{R}}{k/\mathcal{H}} \right) \text{ full correlation function} \\
\times \left(b + f \mu_2^2 + \frac{\mathcal{P}}{(k/\mathcal{H})^2} + i \mu_2 \frac{\mathcal{R}}{k/\mathcal{H}} \right) P_m(k) \\
\text{with distant-} \\
\langle \delta_1 \delta_2 \rangle = \int \frac{d^3 k}{(2\pi)^3} e^{i \vec{k} \cdot \vec{x}} \left[\left(b + f \mu^2 + \frac{\mathcal{P}}{(k/\mathcal{H})^2} \right)^2 + \mu^2 \left(\frac{\mathcal{R}}{k/\mathcal{H}} \right)^2 \right] P_m(k) \quad \begin{array}{c} \text{observer} \\ \text{approximation} \end{array}$

Wide Angle Correlation

• wide angle correlation function:

Szalay, Matsubara, Landy 1998, Szapudi 2004, Papai & Szapudi 2008

- no gravitational potential contribution (P-term)
- *few* missing velocity terms (*R-term*)
- *negligible* in traditional analysis

III. RESULTS

• deviation: largely from velocity R, not from "wide angle"

- R ~ 1/r due to volume effect (r: distance to galaxies)
- number of pairs is ~ volume

 no wide-angle galaxy pairs

III. RESULTS

• correlation: *excess* from the mean

 average over all pairs (opening angle) given shape µ & r

 uncertainties in monopole and larger for quadrupole

Take Home Message

- with single tracer:
 - velocity & potential: practically *negligible*
 - no relativistic effect, or wide-angle effect
- with **multi**-tracer:
 - velocity & potential: potentially *measurable*
 - *tests* of general relativity on horizon scales

Yoo, Hamaus, Seljak, Zaldarriaga, PRD, 2012 Yoo & Seljak, in preparation

GOING BEYOND THE KAISER REDSHIFT-SPACE DISTORTION FORMULA: GENERAL RELATIVISTIC EFFECT

JAIYUL YOO

INSTITUTE for THEORETICAL PHYSICS, UNIVERSITY of ZÜRICH

Collaboration with

Nico Hamaus, Uros Seljak, Matias Zaldarriaga

KIAS Workshop on Cosmology, October 29 ~ November 2, 2012