

Observational Constraints on the Growth of Supermassive Black Holes at the Edge of the Universe

Myungshin Im

CEOU/Department of Physics & Astronomy, Seoul National University

Hyungsun Jun, Yiseul Jeon, Jihoon Kim, Won-Kee Park, Changsu Choi, Dohyeong Kim, Hyung Mok Lee, Myung Gyoon Lee, Jonghak Woo (SNU), Y. Ohyama (ASIAA), Minjin Kim (NRAO/SNU), T. Nakagawa, H. Matsuhara, S. Oyabu, T. Takagi, T. Wada (ISAS/JAXA), X. Fan (Steward Observatory), Y. Urata (NCU), T. Sakamoto, N. Gehrels (NASA/GSFC), P. Choi (Pomona College), T. Kruehler, J. Greiner (MPE), Soojong Pak (Kyunghee Univ.)

Origin of the Black Hole

Center for the
Exploration of the
Origin of the
Universe

Black holes with ~ 10 M_☉

Supermassive Black Holes (SMBH)

- What are they?
- Black Holes with masses ~ 10⁵ − 10¹⁰ M_☉
 - Where are they?
- Centers of massive spheroids/bulges or quasars

Elliptical galaxy

Bulges of Spirals

KIAS Workshop 2010

Quasars/AGNs

Super-massive Black Holes in <u>Inactive</u> Galaxies

Center for the
Exploration of the
Origin of the
Universe

SMBH mass ∝

mass, velocity dispersion, and luminosity of the host galaxy (e.g., Gebhardt et al. 2000; Ferrarese & Merritt 2000; Marconi & Hunt 2003)

Quasars (Active galaxies)

Quasars = QUASi-stellAR radio sources

10¹² L_☉ in a sphere with d < 2.5 x 10¹⁷cm
 (3 light-months) → powered by SMBHs!

Im, Lee, et al. 2007, Lee, Im, et al. 2008

Reverberation Mapping or Single Epoch Measurement

Center for the
Exploration of the
Origin of the
Universe

Variability in the Central Light Source

Time Lag = Distance to BL Clouds

Variability in the Line Flux

Width of the Emission Line Due to Doppler Motion = Velocity of BL Clouds

Center for the

- Reverberation mapping → Long-term monitoring needed (months – decades)
- R_{BLR} ∝ L(Continuum) or Line Flux
 - → BH measurement with a single-epoch spectrum is possible! (Kaspi et al. 2000; Vestergaard et al. 2005; Greene & Ho 2005; Kim, Im, & Kim 2010)

$$M_{
m BH} = (2.0^{+0.4}_{-0.3}) \ imes 10^6 \left(rac{L_{
m H}lpha}{10^{42} {
m ergs s}^{-1}}
ight)^{0.55\pm0.02} \left(rac{
m FWHM_{
m H}lpha}{10^3 {
m km s}^{-1}}
ight)^{2.06\pm0.06} M_{\odot}$$

Masses of SMBHs at high redshift

Center for the
Exploration of the
Origin of the
Universe

• The most massive SMBHs (M ~ 10^{10} M $_{\odot}$ or more) at 2 < z < 4.5, 10^9 M $_{\odot}$ BHs at z ~ 6.42 (t_{univ} < 1 Gyr)

Supermassive Black Holes in Early Universe

Quasars have been discovered out to z ~ 6.43 (Fan et al. 2003; Willott et al. 2007).

Luminous quasars exist out to $z \sim 6.4 \rightarrow 10^9 \, M_{\odot}$ SMBHs in place at $t_{univ} \sim 1 \, Gyr$

QSO at z=6.43 (Willott et al. 2007)

Growing SMBHs

- $M(t)=M(0) \exp[(1-\epsilon)/\epsilon (t/t_{Edd})]=M(0) \exp(t/\tau)$, with $\tau \sim 4.5 \times 10^7 (\epsilon/0.1)$ yrs
- Not enough time (only ~0.64 Gyr between z= 6 and 15)
- Previous measurements with CIV and MgII → Prone to errors, Better if we can use Hα or Hβ

Need for Better Mass Measurement

Netzer et al. (2007)

Shen et al. (2008)

- ✓ Reliability of CIV measurement has been in question (or even MgII outflow contribution, asymmetric profile, etc)
- √ At higher z, metal abundance may decrease + extinction
- ✓ Need for a well-calibrated, independent measure of M_{BH} using optical spectra such as H α or H β (e.g., Greene & Ho 2005).

AKARI Spectroscopy at 2.5-5 µm

QSONG

- Quasar Spectroscopic Observation with NIR Grism (AKARI Mission Program)
- NIR Spectroscopic Study of high-z and low-z AGNs at 2.5 5.0 µm with NIR grism of AKARI (R ~ 120, FWHM ~ 2500 km/sec)
- High-z study (HQSONG): 200+ QSOs at 3.4 < z < 6.42
- Low-z study (LQSONG): 102 nearby AGNs + red AGNs

High-z QSONG Sample (HQSONG)

- 200+ Type-1 QSOs at 3.4 < z < 6.4 (mostly SDSS QSOs)
- z-band magnitude limit:

$$z_{AB} < \sim 19$$
 for $z < 5.5$
 $z_{AB} < \sim 20$ for $z > 5.5$

- L_{bol} limit ~ 10^{47} erg s⁻¹
- M_{BH} limit ~ 10⁹ M_☉
- BH mass from well-calibrated Hα line (Greene & Ho 2005; McGill et al. 2008; versus CIV/MgII) → evolution of the most massive QSOs at high-z

NIR Prism Observation

BR 0006-6224 (z=4.51)

Pílot Study: Ha línes of 14 QSOs at 4.5 < z < 6.22

SDSS J 114816+525150 at z=6.42

Ha Detections (NP)

SMBH Mass Evolution

- $10^{9.3} 10^{10.1} \,\mathrm{M}_{\odot} \implies \text{A few x } 10^9 \,\mathrm{M}_{\odot} \,\text{SMBHs existed at z} \sim 6 \,\,(0.95 \,\mathrm{Gyr})$
- L_{bol}/L_{Edd} ~ 0.4 1.8 [0.8] → Eddington-limited accretion
- No M ~ 10^{10} M_{\odot} SMBHs at z > ~6 (t_{univ} ~ 0.9 Gyr) they are growing!

Center for the Exploration of the Origin of the Universe

How should they evolve?

- Accretion at Eddington limit
- Dustless quasars (Jiang et al. 2010)
- $M(t)=M(0) \exp[(1-\epsilon)/\epsilon (t/t_{Edd})]=M(0) \exp(t/\tau)$, with $\tau \sim 4.5 \times 10^7 (\epsilon/0.1)$ yrs
- X 10⁸ growth → 18 e-fold time → t ~ 0.8 Gyr ~ age of the universe
- Luminosity evolution with L(t) ~ exp(t/τ)

How did SMBHs grew?

Infrared Medium-Deep Survey (IMS)

Center for the
Exploration of the
Origin of the

Universe

- J-band Imaging over 200 deg² to ~23 AB mag (+I,z,Y,...) to identify and study z > 6.5 quasars
- Currently, ~55 deg² covered
- Collaborative agreement with NCU (Taiwan), NASA/GSCF/Pomona College (USA) for GRB study

GRB 100905A at $z \sim 7.5$

- UKIRT zJHK imaging from 15 min after the burst (Im et al. 2010, GCN Circular 11222)
- z-dropout at redshift ~ 7.5
- Third of three GRBs with short duration

Quasars at $z \sim 7$?

Current Limit: Luminosity Evolution (z > 6.5)

- L ~ exp[t/τ(ε)]
- Radiation eff. ε ~0.1-0.3

Summary

- QSONG: AKARI NIR (2.5-5 micron) Spectroscopy Study of ~200 high redshit QSOs (3.4 < z < 6.4) and 102 low redshfit AGNs
- Rest-frame optical spectra for high redshift QSOs Evolution of mass of SMBHs at high redshift – first detection of Hα lines at QSOs z > 4.5 (before JWST)
- There are ~10⁹ M_☉ SMBHs out to z ~ 6, but the most massive QSOs (10¹⁰ M_☉) disappears beyond z ~ 6
- Limit on number density of quasars at z > 6.5