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Introduction
Baryon Acoustic Oscillations (BAOs)

• Acoustic signature of primeval baryon-photon fluid
 imprinted on galaxy clustering

• Characteristic scale:  r~100 Mpc/h, k~0.06 Mpc/h
standard ruler

unique tool to trace cosmic expansion history

Detection : SDSS,  2dF

On-going / up-coming :

BOSS,  Wiggle-z,  HETDEX, SuMIRe-PFS,  Euclid,  WFIRST, ...etc.

{



BAOs as dual cosmological probe

✓ Alcock & Paczynski effect

Observed galaxy clustering pattern is 
apparently distorted in two ways:

∆r⊥ = DA(z)∆ θ

∆r|| = c∆ z/H(z)

observer

(∆θ, ∆z)

H(z) & DA(z) 
Using BAO as standard ruler,

can be measured simultaneously
e.g., Seo & Eisenstein (’03); Hu & Haiman (’03); Blake & Glazebrook (’03); Shoji et al.(’09)



BAOs as dual cosmological probe

✓ Alcock & Paczynski effect

f(z) ≡ d lnD+

d ln a
� {Ωm(z)}γf(z) ≡ d lnD+

d ln a
� {Ωm(z)}γ

e.g., γ ≈ 0.55 (GR), 0.68 (DGP)

Observed galaxy clustering pattern is 
apparently distorted in two ways:

✓ Redshift distortion effect

Measurement of f(z) offers a test of gravity on cosmological scales.

observer

magnitude of 
distortion

∝

peculiar 
velocity

f(z)

growth-rate parameter

Linder (’05)

Linder (’08); Guzzo et al. (’08); Yamamoto et al. (’08); Song & Dore (’09); 
Percival & White (’09); White, Song & Percival (’09); Song & Percival (’09)



Practical issues

Reducing (known) systematics:

Non-linear gravitational evolution

Non-linear redsfhit distortion

Galaxy biasing

Precision BAO measurement at a percent level

to determine acoustic scale and/or redshift distortion
Accurate theoretical template 

Small, but non-negligible at a percent level precision

{



Methodology

Reconstructing

Forward modeling

Fitting
... still on-going subjects

Perturbation theory (PT) based modeling of BAOs

Sophisticated parametric formula and/or hybrid fitting

Degradation of acoustic features by Zel’dovich approx.

Seo et al. (‘08, ‘09); Padmanabhan & White (‘09)

Eisenstein et al. (’07); Huff et al. (’07); Padmanabhan et al. (’09)

Crocce & Scoccimarro (‘06ab,’08);  Jeong & Komatsu (’06,’09);  Matsubara (‘08ab);  
AT & Hiramatsu (’08);  AT et al. (’09, ’10);  etc. ...



Perturbation theory: Reloaded

Juszkiewicz (’81), Vishniac (’83), Goroff et al. (’86), 
Suto & Sasaki (’91), Jain & Bertschinger (’94), ...

CDM+baryon = pressureless & irrotational fluid

Basic 
eqs.

Perturbative 
expansion

4 JEONG & KOMATSU

Fig. 2.— (Top) Dimensionless power spectrum, ∆2(k). The
solid and dashed lines show perturbation theory calculations and
N-body simulations, respectively. The dotted lines show the pre-
dictions from halo approach (Smith et al. 2003). The dot-dashed
lines show the linear power spectrum. (Bottom) Residuals. The
errorbars show the N-body data divided by the perturbation the-
ory predictions minus one, while the solid curves show the halo
model calculations given in (Smith et al. 2003) divided by the per-
turbation theory predictions minus one. The perturbation theory
predictions agree with simulations to better than 1% accuracy for
∆2(k) ! 0.4.

the Zel’dovich approximation (Crocce et al. 2006). The
initial redshifts are zinitial = 27, 34, 42, and 50 for 512,
256, 128, and 64 h−1 Mpc simulations, respectively. In
Appendix A we show more on the convergence test (see
Fig. A1).

4. RESULTS

Figure 1 compares P (k, z) at z = 1, 2, 3, 4, 5 and 6
(from top to bottom) from simulations (dashed lines), PT
(solid lines), and linear theory (dot-dashed lines). The
PT predictions agree with simulations so well that it is
actually difficult to see the difference between PT and
simulations in Figure 1. The simulations are significantly
above the linear theory predictions at high k.

To facilitate the comparison better, we show ∆2(k, z)
[Eq. (2)] in Figure 2. We find that the PT predictions
(thin solid lines) agree with simulations (thick solid lines)
to better than 1% accuracy for ∆2(k, z) ! 0.4. On the
other hand, the latest predictions from halo approach

Fig. 3.— Non-linearity in baryonic acoustic oscillations. All
of the power spectra have been divided by a smooth power
spectrum without baryonic oscillations from equation (29) of
(Eisenstein & Hu 1998). The errorbars show N-body simulations,
while the solid lines show perturbation theory calculations. The
dot-dashed lines show the linear theory predictions. Perturbation
theory describes non-linear distortion on baryonic oscillations very
accurately at z > 1. Note that different redshift bins are not inde-
pendent, as they have grown from the same initial conditions. The
N-body data at k < 0.24 and k > 0.24 h Mpc−1 are from 512 and
256 h−1 Mpc box simulations, respectively.

(Smith et al. 2003) (dotted lines) perform significantly
worse then PT. This result suggests that one must use PT
to model non-linearity in the weakly non-linear regime.

The baryonic features in the matter power spectrum
provide a powerful tool to constrain the equation of state
of dark energy. This method uses the fact that the CMB
angular power spectrum sets the physical acoustic scale,
and thus the features in the matter power spectrum seen
on the sky and in redshift space may be used as the stan-
dard ruler, giving us the angular diameter distance out to
the galaxy distribution at a given survey redshift as well
as H(z) (Matsubara & Szalay 2003; Hu & Haiman 2003;
Seo & Eisenstein 2003; Blake & Glazebrook 2003). In
order for this method to be viable, however, it is cru-
cial to understand distortion on the baryonic acoustic
oscillations caused by non-linearity. This has been inves-
tigated so far mostly using direct numerical simulations
(Meiksin et al. 1999; Springel et al. 2005; White 2005;
Seo & Eisenstein 2005). (Meiksin et al. 1999) also com-
pared the PT prediction with their N -body simulations
at z = 0, finding that PT was a poor fit. This is be-
cause non-linearity at z = 0 is too strong to model by
PT. Figure 3 shows that PT provides an accurate an-
alytical account of non-linear distortion at z > 1: even
at z = 1, the third peak at k ! 0.18 h Mpc−1 is mod-
eled at a few percent level. At z > 2, all the oscilla-
tory features are modeled to better than 1% accuracy.
A slight deficit in power from N -body simulations at
k ∼ 0.2 h Mpc−1 relative to the perturbation theory
predictions at z = 2 may be due to artificial transient
modes from the Zel’dovich approximation used to gen-
erate initial conditions. One may eliminate such an ef-
fect by either using a smaller box-size or a better initial
condition from the second-order Lagrangian perturba-
tion theory (Crocce et al. 2006). As the power spectrum
at k > 0.24 h Mpc−1 from 256 h−1 Mpc simulations at
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at z = 1, the third peak at k ! 0.18 h Mpc−1 is mod-
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Jeong & Komatsu (’06)

δ = δ(1) + δ(2) + δ(3) + · · ·

�δ(k; z)δ(k�; z)� = (2π)3δD(k + k�) P (k; z)



Perturbation theory: Revolution

!m ! 0:27, !" ! 0:73, !b ! 0:046, and h ! 0:72. The
initial power spectrum had a scalar spectral index ns ! 1
and was normalized to give !8 ! 0:9 when linearly
evolved to z ! 0. We measured the propagator, power
spectrum, and correlation function at various redshift out-
puts. In all cases the errors reported in this paper are for the
mean of the ensemble, i.e. corresponding to a volume of
"105#h$1 Gpc%3, and obtained from the scatter among the
50 realizations, except in Fig. 2 where we use the smaller
set of simulations, with eight realizations giving a total
volume of "8#h$1 Gpc%3.

In this paper we focus on a single cosmological model.
A more detailed assessment of RPT and numerical simu-
lations, including different cosmologies, will be presented
elsewhere [22]. Note, however, that in [19] we validated
the RPT predictions for the propagator for different red-
shifts and both densities and velocities. Since the evolution
of CDM perturbations is not self-similar, this was a non-
trivial test. Here we concentrate on the density power
spectrum at different redshifts. Higher-order statistics
will be considered in a forthcoming paper [28].

B. The power spectrum

We now present results for the evolution of the baryon
wiggles in the power spectrum using RPT and compare
them to numerical simulations. According to Eq. (9) one
needs to calculate the nonlinear propagator G and the
mode-coupling power PMC. Here we explain the basic
results in words and refer the reader to the Appendix
for more details about the calculation; a thorough discus-
sion of the technical aspects involved will presented in
[22].

In [19] we obtained an analytical prescription for the
nonlinear propagator. This was done as follows. First, we
calculated its low-k behavior from one-loop PT and its
large-k limit, Eq. (6), by resumming the infinite subset of
diagrams that provided the dominant contribution. We then
noticed that these two limits can be matched in a unique
way, and without introducing any free parameters, if one
regards the low-k limit as an expansion of the Gaussian in
Eq. (6). This procedure resulted in a propagator, for both
density and velocity divergence fields, that was shown to

(          ) (          )

(          )(          )

FIG. 2 (color online). Nonlinear evolution of the acoustic oscillations in the dark matter power spectrum. In all cases we show the
nonlinear power spectrum divided by a smooth spectrum [30] to make the acoustic oscillations more visible. The square symbols with
error bars correspond to measurements in N-body simulations, whereas RPT prediction is represented by a solid red line as labeled.
One-loop perturbation theory (solid black line), halofit (solid magenta line), and linear theory (dashed blue line) are also shown.
The different panels correspond to z ! 0, 0.3, 1, 2 (top left, top right, bottom left, and bottom right panels, respectively). The
agreement between the RPT prediction and the N-body measurements is excellent for all redshifts; see Fig. 3 for a more detailed
comparison.

NONLINEAR EVOLUTION OF BARYON ACOUSTIC . . . PHYSICAL REVIEW D 77, 023533 (2008)

023533-5

Reorganizing standard PT expansions in terms of non-
perturbative quantities (renomalized PT)

Crocce & Scoccimarro (‘06ab, ’08)

Development of improved PT 
Matsubara (‘08ab)

AT & Hiramatsu (‘08);
AT et al. (’09)

Bernardeau et al. (’09)

Pietroni (’08)

• Lagrangian PT

• Time-RG

• Closure approx.

• Gamma expansion



Standard PT vs. Improved PT

P (k) = P (11)(k) +
�
P (22)(k) + P (13)(k)

�
+

�
P (33)(k) + P (24)(k) + P (15)(k)

�
+ · · ·

Standard PT

Linear (tree) 1-loop 2-loop

Improved PT (closure approx.)

∝ D2(t) ∝ D4(t) ∝ D6(t)

Naive expansion scheme regarding as a small expansion parameterδ

P (k; t) = G2(k|t, t0)P (k; t0)+
�

dt1

�
dt2 G(k|t1, t0)G(k|t2, t0) Φ1−loop[P (k); t1, t2]

propagator Mode-coupling (MC) term

• Non-perturbative effect is incorporated through propagator

• Iteratively evaluate MC term (irreducible loop diagrams) by Born approx.

initial P(k)



Convergence properties

simply chosen at the center of the n-th radial bin, i.e., rn ¼
ðrmin þ rmaxÞ=2.

Equation (4.2) usually suffers from the ambiguity of the
zero-point normalization in the amplitude of two-point
correlation function, because of the lack of the low-k
powers due to the finite boxsize of the simulations. With
the 1; 0243 grids and the boxsize of Lbox ¼ 1h%1 Gpc;
however, we can safely evaluate the two-point correlation
function around the baryon acoustic peak. Comparison
between different computational methods, together with
convergence check of this method, is presented in
Appendix C.

Finally, similar to the estimation of power spectrum, the
finite-mode sampling also affects the calculation of the
two-point correlation function. We thus correct it by sub-
tracting and adding the extrapolated linear density field as
!̂ðrÞ % !̂linðrÞ þ !linðrÞ, where !̂lin is the correlation func-
tion estimated from the Gaussian density field, and !lin is
the linear-theory prediction of two-point correlation
function.

B. Results in real space

1. Power spectrum

Before addressing a quantitative comparison between
the N-body simulation and improved PT, we first discuss
the convergence properties of the improved PT, and con-
sider how well the calculation based on the improved PT
does improve the prediction compared to the standard PT.

Figure 4 plots the overall behaviors of the nonlinear
power spectrum of density fluctuation, Pðk; zÞ &
P11ðk; zÞ, given at z ¼ 0, adopting the WMAP3 cosmologi-
cal parameters. In the left panel, the results of standard PT
are shown, and the contributions to the total power spec-
trum up to the two-loop diagrams are separately plotted.
On the other hand, the right panel shows the results of the
improved PT. We plot the contributions up to the second-
order Born approximation labeled as MC1 and MC2.
In Fig. 4, there are clear distinctions between standard

and improved PTs. While the loop corrections in standard
PT change their signs depending on the scales and exhibit
an oscillatory feature, the corrections coming from the
Born approximation in the improved PT are all positive
and mostly the smooth function of k. Further, the higher-
order corrections in the improved PT have a remarkable
scale-dependent property compared to those in the stan-
dard PT; their contributions are well localized around some
characteristic wave numbers, and they are shifted to the
higher k modes as increasing the order of PT. These trends
clearly indicate that the improved PTwith closure approxi-
mation has a better convergence property. Qualitative be-
haviors of the higher-order corrections quite resemble the
predictions of RPT by Crocce and Scoccimarro [34].
Now, let us focus on the behavior of BAOs, and

discuss how the convergence properties seen in Fig. 4
affect the predictions of BAO features. In Fig. 5, adopting
the WMAP3 cosmological parameters, we plot the ratio
PðkÞ=Pno-wiggleðkÞ, where the function Pno-wiggleðkÞ is the

FIG. 4 (color online). Convergence properties of standard PT (left) and improved PT (right) expansions in the matter power
spectrum. In each panel, the higher-order contributions to the total power spectrum labeled as Pnl is separately plotted. In the left panel,

one-loop and two-loop corrections in the standard PT P1-loop
11 and P2-loop

11 , are plotted, while in the right panel, the mode-coupling

corrections PðMC1Þ
11 and PðMC2Þ

11 in the improved PT given at Eqs. (3.12) and (3.13), respectively, are shown (labeled as MC1 and MC2),
together with the first term in Eq. (3.11) [labeled as G2P0]. Note that the dashed lines indicate the negative values.

TARUYA et al. PHYSICAL REVIEW D 80, 123503 (2009)

123503-8

negative

positive

negative

• All corrections become
comparable at low-z. 

• Positivity is not guaranteed.

Corrections from MC terms are positive 
and localized, and shifted to higher-k as 
increasing the order of Born approx.

positive

positive

Standard PT Improved PT



Improved PT in real space

Correlation function

Limitation of 
standard PT

(1-loop)

Power spectrum
z=3

For power spectrum, reliable range of improved PT 
becomes twice wider than that of standard PT

AT, Nishimichi, Saito & Hiramatsu (’09)



Modeling redshift distortion

real spaceredshift space
v :
ẑ :{ peculiar velocity

observer’s 
line-of-sight direction

�s = �r +
(�v · ẑ)
aH(z)

ẑ ;

• Anisotropy (2D power spectrum)

P (k) ; µ ≡ (�k · ẑ)/|�k|

Enhancement

Suppression

• Power spectrum amplitude

Kaiser effect
Finger-of-God effect

(small-k)

(large-k)

Observed clustering pattern is apparently distorted.

P (S)(k, µ)

Definition



Redshift-space power spectrum

P (S)(k) =
�

d3x eik·x
�
e−ikµ ∆uz {δ(r)−∇zuz(r)} {δ(r�)−∇zuz(r�)}

�

uz = (�v · ẑ)/(aH)
∆uz = uz(r)− uz(r�)

Exact expression x = r− r�

... physical, but still empirical formula

(Popular) analytic model e.g., Scoccimarro (2004)

fitting parameter

Finger of God (non-linear) Kaiser 

P (S)(k, µ) = e−(kµ σv)2
�
Pδδ(k)− 2 µ2 Pδθ(k) + µ4 Pθθ(k)

�

(1D velocity dispersion)



Missing terms, found
From low-k expansion of the exact formula,

�
θ(k1)

�
δ(k2)− µ2

2 θ(k2)
� �

δ(k3)− µ2
3 θ(k3)

��
= (2π)3δD(k123) Bσ(k1,k2,k3)

Non-Gaussian 
correction 

A(k, µ) = −2 k µ

�
d3p

(2π)3
pz

p2
Bσ(p,k− p,−k)

Gaussian 
correction 

+A(k, µ) + B(k, µ)
�

Leading-order corrections to the mode-coupling btw velocity & density

anti-phase 
oscillation

small in amplitude 
(<1-2%)

These also 
depend on ‘f ’

P (S)(k, µ) = e−(kµfσv)2
�
Pδδ(k)− 2fµ2Pδθ(k) + f2µ4Pθθ(k)

B(k, µ) = (kµ)2
�

d3p

(2π)3
F (p)F (k − p)

F (p) ≡ pz

p2

�
Pδθ(p)− p2

z

p2
Pθθ(p)

�



Role of corrections

In Fig. 6, to see the significance of the contributions
from corrections A and B, we divide the improved PT
prediction for the power spectra PðSÞðkÞ at z ¼ 1 into the

three pieces as PðSÞ
Kaiser, P

ðSÞ
corr;A, and PðSÞ

corr;B, which are sepa-

rately plotted as dotted, long-dashed, and short dashed

lines, respectively. The power spectrum PðSÞ
Kaiser is the con-

tribution of the nonlinear Kaiser term given in Eq. (10),
convolved with the damping function DFoG. The spectra

PðSÞ
corr;A and PðSÞ

corr;B represent the actual contributions of the

corrections A and B defined by Eq. (22), with a fitted value
of !v. The corrections A and B give different contributions
in the amplitude of the monopole and quadrupole spectra,
and their total contribution can reach$10% and$40% for
monopole and quadrupole spectra at k & 0:2h Mpc%1,
respectively. Thus, even though the resultant shape of the
total spectrum PðSÞðkÞ apparently resembles the one ob-
tained from the phenomenological model, the actual con-
tribution of the corrections A and B would be large and
cannot be neglected.
Note, however, that a closer look at low-z behavior

reveals a slight discrepancy around k$ 0:15h Mpc%1

and 0:22h Mpc%1 in the monopole spectrum. Also, dis-
crepancies in the quadrupole spectrum seem a bit large,
and eventually reach $5% error in some wave numbers at
z ¼ 0:5. This is partially ascribed to our heterogeneous
treatment on the corrections A and B using the standard PT
calculations. It is known that the standard PT result generi-
cally gives rise to a strong damping in the BAOs, and it
incorrectly leads to a phase reversal of the BAOs. Thus,
beyond the validity regime of the standard PT, the predic-

FIG. 5 (color online). Same as in Fig. 2, but here we adopt a new model of redshift distortion (18). Solid and dashed lines represent
the predictions for which the spectra P"", P"#, and P## are obtained from the improved PT including the correction up to the second-
order Born correction, and one-loop calculations of the standard PT, respectively. In both cases, the corrections A and B given in
Eqs. (19) and (20) are calculated from standard PT results (see Appendix A). The vertical arrows indicate the maximum wave number
k1% defined in Eq. (12), for standard PT and improved PT (from left to right).

FIG. 6 (color online). Contribution of each term in the
redshift-space power spectrum. For monopole (‘ ¼ 0, left) and
quadrupole (‘ ¼ 2, right) spectra of the improved model pre-
diction at z ¼ 1 shown as solid lines of Fig. 5, we divide the total
power spectrum PðSÞ

total (solid) into the three pieces as PðSÞ
total ¼

PðSÞ
Kaiser þ PðSÞ

corr;A þ PðSÞ
corr;B, and each contribution is separately

plotted dividing by smoothed reference spectra, PðSÞ
‘;no-wiggle.

Here, the spectrum PðSÞ
Kaiser (dotted) is the contribution of the

nonlinear Kaiser term (10) convolved with the Finger-of-God

damping DFoG, and the corrections PðSÞ
corr;A and PðSÞ

corr;B are those

given by Eq. (22).
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prediction for the power spectra PðSÞðkÞ at z ¼ 1 into the
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corr;B, which are sepa-
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lines, respectively. The power spectrum PðSÞ
Kaiser is the con-

tribution of the nonlinear Kaiser term given in Eq. (10),
convolved with the damping function DFoG. The spectra

PðSÞ
corr;A and PðSÞ

corr;B represent the actual contributions of the

corrections A and B defined by Eq. (22), with a fitted value
of !v. The corrections A and B give different contributions
in the amplitude of the monopole and quadrupole spectra,
and their total contribution can reach$10% and$40% for
monopole and quadrupole spectra at k & 0:2h Mpc%1,
respectively. Thus, even though the resultant shape of the
total spectrum PðSÞðkÞ apparently resembles the one ob-
tained from the phenomenological model, the actual con-
tribution of the corrections A and B would be large and
cannot be neglected.
Note, however, that a closer look at low-z behavior

reveals a slight discrepancy around k$ 0:15h Mpc%1

and 0:22h Mpc%1 in the monopole spectrum. Also, dis-
crepancies in the quadrupole spectrum seem a bit large,
and eventually reach $5% error in some wave numbers at
z ¼ 0:5. This is partially ascribed to our heterogeneous
treatment on the corrections A and B using the standard PT
calculations. It is known that the standard PT result generi-
cally gives rise to a strong damping in the BAOs, and it
incorrectly leads to a phase reversal of the BAOs. Thus,
beyond the validity regime of the standard PT, the predic-

FIG. 5 (color online). Same as in Fig. 2, but here we adopt a new model of redshift distortion (18). Solid and dashed lines represent
the predictions for which the spectra P"", P"#, and P## are obtained from the improved PT including the correction up to the second-
order Born correction, and one-loop calculations of the standard PT, respectively. In both cases, the corrections A and B given in
Eqs. (19) and (20) are calculated from standard PT results (see Appendix A). The vertical arrows indicate the maximum wave number
k1% defined in Eq. (12), for standard PT and improved PT (from left to right).
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Role of corrections

Here, the spectra P!!, P"", and P!" denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence " is
defined by " ! ru ¼ #rv=ðaHfÞ.2

On the other hand, the functional form of the damping
term can be basically modeled from the distribution func-
tion of one-dimensional velocity. Historically, it is charac-
terized by a Gaussian or exponential function (e.g., [51–
54]), which leads to

DFoG½x' ¼
!
expð#x2Þ Gaussian;
1=ð1þ x2Þ Lorentzian:

(11)

Note that there is an analogous expression for the expo-
nential distribution, i.e., DFoG½x' ¼ 1=ð1þ x2=2Þ2 [50],
but the resultant power spectrum is quite similar to the
one adopting the Lorentzian form for the range of our
interest, x & 1. Since the Finger-of-God effect is thought
to be a fully nonlinear effect, which mostly comes from the
virialized random motion of the mass (or galaxy) residing
in a halo, the prediction of #v seems rather difficult. Our
primary purpose is to model the shape and structure of the

acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus regard
#v as a free parameter and determine it by fitting the
predictions to the simulations or observations.
Figure 2 compares the phenomenological models of

redshift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-space
power spectrum from the phenomenological models, we
adopt the improved PT treatment by Refs. [33,34], and the
analytic results including the corrections up to the second-
order Born approximation are used to obtain the three
different power spectra P!!, P!", and P"". The accuracy
of the improved PT treatment has been checked in detail by
Ref. [34], and it has been shown that the predictions of P!!

reproduce the N-body results quite well within 1% accu-
racy below the wave number k1%, indicated by the vertical
arrows in Fig. 2. This has been calibrated from a proper
comparison between N-body and PT results and is empiri-
cally characterized by solving the following equa-
tion [25,34]:

k21%
6$2

Z k1%

0
dqPlinðq; zÞ ¼ C (12)

with C ¼ 0:7 and Plin being the linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction at

FIG. 2 (color online). Same as in Fig. 1, but here we plot the results of phenomenological model predictions. The three different
predictions depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms [Eqs. (10) and (11)]. The left panel shows the monopole power spectra (‘ ¼ 0), and the
right panel shows the quadrupole spectra (‘ ¼ 2). In all cases, the one-dimensional velocity dispersion #v was determined by fitting
the predictions to the N-body simulations. In each panel, the vertical arrows indicate the maximum wave number k1% for improved PT
prediction including up to the second-order Born approximation [see Eq. (12) for a definition].

2The sign convention of the definition of velocity divergence "
differs from that of Refs. [33,34], but is equivalent to the one in
Refs. [26–28,42].
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effect through (e.g., [18, 52, 53])
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(
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(27)

The quantities DA,fid and Hfid are the fiducial values
of the angular diameter distance and Hubble parameter
adopted in the N-body simulations. For a given set of
cosmological parameters, the redshift-space power spec-
trum P (S) is calculated from Eq. (18), but we here treat
the quantity f as free parameter in addition to the ve-
locity dispersion σv. Further, to mimic a practical data
analysis using galaxy power spectrum, we introduce the
bias parameter b, assuming the linear deterministic rela-
tion, i.e., δsim = b δm [69]. Then, fitting the monopole
and quadrupole power spectra of Eq. (25) to those of the
N-body simulation at z = 1, we determine the best-fit
values of DA, H and f , just marginalized over the pa-
rameters σv and b. To do this, we use the Markov chain
Monte Carlo (MCMC) technique described by Ref. [55],
and adopt the likelihood function given by

− 2 lnL =
∑

n

∑

!,!′=0,2

{
P (S)

!,sim(kn) − P (S)
!,model(kn)

}

× Cov−1
!,!′(kn)

{
P (S)

!′,sim(kn) − P (S)
!′,model(kn)

}
,

(28)

where the quantity Cov!,!′ represents the covariance ma-
trix between different multipoles. The range of wavenum-
ber used in the likelihood analysis was chosen as k ≤
kmax = 0.205hMpc−1, so as to satisfy kmax ≤ k1%. As
for the covariance, we simply ignore the non-Gaussian
contribution (see Ref. [56] for validity of this treatment),
and use the linear theory to estimate the diagonal com-
ponents of the covariance, Cov!,!′ , including the effect of
shot-noise contribution assuming the galaxy number den-
sity ng = 5 × 10−4h3Mpc−3. The explicit expression for
the covariance is presented in Appendix C. We checked
that the linear theory estimate reasonably reproduces the
N-body results of the covariance matrix for the range of
our interest k ! 0.3hMpc−1 at z = 1.

Fig. 9 summarizes the result of the MCMC analy-
sis assuming an idealistically large survey with Vs =
20h−3Gpc3. The two-dimensional contour of the 1-σ
marginalized errors are shown for DA/DA,fid vs H/Hfid

(bottom left), DA/DA,fid vs f (middle left), and f vs
DA/DA,fid (bottom center). Also, the marginalized pos-
terior distribution for each parameter are plotted in the
top left, middle center, and bottom right panels. In each
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FIG. 9: Results of MCMC analysis using the model of red-
shift distortion with and without corrections (depicted as blue
and red lines, respectively). Based on the power spectrum
template (25), we derive the posterior distribution for the pa-
rameters DA, H and f from the monopole and quadrupole
spectra of N-body simulations at z = 1, marginalized over
the one-dimensional velocity dispersion σv and linear bias pa-
rameter b. Top left, middle center and bottom right show
the marginalized posterior distribution for DA/DA,fid, H/Hfid

and f . Shaded regions indicate the 1% interval around
the fiducial values. Middle left, bottom left, and bottom
center plot the two-dimensional 1-σ errors on the surfaces
(H/Hfid, f), (DA/DA,fid, H/Hfid), and (f, H/Hfid). Note that
in estimating likelihood function (28), we adopted the lin-
ear theory to calculate the covariance matrix Cov!,!′ , includ-
ing the shot-noise contribution with ng = 5 × 10−4h3Mpc−3

and assuming an idealistically large survey volume Vs =
20h−3Gpc3 (see Appendix C for explicit expression).

panel, blue and red lines respectively represent the results
using the model of redshift distortion with and without
the terms A and B.

As it is clear from Fig. 9, the model including the cor-
rections shows a better performance. Within the 1-σ
errors, which roughly correspond to the precision of a
percent-level, it correctly reproduces the fiducial values
of the parameters (indicated by crosses). On the other
hand, the two-dimensional errors of the results neglecting
the corrections show a clear evidence for the systematic
bias on the best-fit parameters. Accordingly, the resul-
tant value of χ2 around the best-fit parameters, given by
χ2 = −2 lnL, is larger than that of the case including the
corrections: χ2 = 10.1 and 22.2 for the cases with and
without corrections, respectively. Although the deviation
from the fiducial values seems somewhat small except for
the growth-rate parameter f , this is solely due to the fact
that we only use the monopole and quadrupole power
spectra. It would be generally significant in the analy-
sis using the full shape of redshift-space power spectrum,
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New model of redshift distortion
Phenomenological model 

(w/o corrections)

 using MCMC
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FIG. 10: Expected two-dimensional contours on marginalized errors around the best-fit values of DA/DA,fid vs H/Hfid (bottom
left), f vs H/Hfid (bottom right) and DA/DA,fid vs f (top left) at z = 1, obtained from the full shape of redshift-space power
spectrum. The maximum wavenumber for parameter estimation is chosen as kmax = 0.12 (left) and 0.2hMpc−1 (right), so as
to satisfy the condition kmax < k1% for standard PT and improved PT, respectively. In each panel, open and shaded contours
indicate the two dimensional errors for the surveys with Vs = 4 and 20h−3Gpc3.

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated the power spec-
trum in redshift space, and presented a new model of red-
shift distortion, which is particularly suited for modeling
anisotropic BAOs around k = 0 ∼ 0.3hMpc−1. Contrary
to the previous phenomenological modes in which the ef-
fects of Kaiser and Finger-of-God are separately treated
in a multiplicative way, the new model includes the cor-
rections coming from the non-linear coupling between ve-
locity and density fields, which give rise to a slight up-
lift in the amplitude of monopole and quadrupole power
spectra. The model predictions can give a good agree-
ment with results of N-body simulations, and a percent
level precision is almost achieved.

Based on the new model of redshift distortion, we pro-
ceeded to the parameter estimation analysis, and checked
if the theoretical prediction correctly recovers the cosmo-
logical information from the monopole and quadrupole
spectra of N-body simulations. MCMC analysis revealed
that while the new model of redshift distortion combin-
ing the improved PT calculation faithfully reproduces the
fiducial parameters DA, H and f and the precision can
reach at a percent level, the model neglecting the correc-
tions (A and B terms) exhibits a slight offset of the best-
fit values. In order to estimate the potential impact on
the future measurement, we have further made the Fisher
matrix analysis using the full shape of power spectrum
P (S)(k, µ), and found that the existing phenomenological
models of redshift distortion neglecting the corrections

produce a systematic error on measurements of the angu-
lar diameter distance and Hubble parameter by 1 ∼ 2%,
and the growth rate parameter by ∼ 5%. This would
become non-negligible for stage-III and -IV class surveys
defined by the Dark Energy Task Force. Correctly mod-
eling redshift distortion is thus crucial, and the new pre-
scription of redshift-space power spectrum presented here
plays an essential role in constraining the dark energy
and/or modified gravity from anisotropic BAOs.

Finally, we note several remaining tasks in practical ap-
plication to the precision measurement of BAOs. One is
the improved treatment for calculation of the corrections,
A and B terms, which needs to evaluate the bispectrum
of density and velocity fields. In doing this, a system-
atic treatment using multi-point propagator developed
by Ref. [59] would be useful and indispensable. Also, the
effects of the new contributions to the redshift-space clus-
tering in the presence of the primordial non-Gaussianity
and the dark sector interaction would be presumably im-
portant (e.g., [10, 60, 61]), and should deserve further
investigation. Of course, the biggest issue is the galaxy
biasing. Recent numerical and analytical studies claim
that the scale-dependent and stochastic properties of the
galaxy bias can change the redshift-space power spec-
trum, and the potential impact on the determination of
the growth-rate parameter would be significant [62, 63].
A realistic modeling of galaxy biasing relevant for the
scale of BAOs is thus essential, and a further improve-
ment of the power spectrum template needs to be devel-
oped.

cannot be negligible even for 
stage III-class surveys

Fisher matrix analysis using full 2D information

Assumptions

ng = 5× 10−4h3Mpc−3

z = 1, linear bias (b = 2),

fiducial model

wrong model 
w/o corrections



SDSS DR7 LRG samples

monopole & quadrupole spectra fit to PT model

Monopole Quadrupole-to-Monopole ratio

b(k) = b0 + b1 kc

b(k) = b0 + b1 kc

Saito, Nishimichi, AT & Yamamoto (’10) in prep.

Assuming linear scale-dependent bias, 

SDSSS LRG @z=0.35



Constraints on DA, H & f 

0.8 1 1.2
0

0.5

1

0 0.5 1
0

0.5

1

0.8 1 1.2
0

0.5

1

H/Hfid

f

0.8 1 1.20

0.5

1

DA/DA,fid

H
/H

fid

0.8 1 1.2

0.8

1

1.2

f

H
/H

fid

0 0.5 1

0.8

1

1.2

SDSS LRGs monopole & quadrupole

Taruya et al (2010)  kmax=0.155h/Mpc

b(k) = b0+b1kc

constant bias Simultaneously
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Resultant constraint on 
DA is rather sensitive to 
property of galaxy bias

Saito, Nishimichi, AT & Yamamoto (’10) in prep.

However,



Summary
Modeling and predicting BAOs from perturbation theory

gravitational evolution

redshift distortion

PT-based model has been making rapid progress 
and accuracy of prediction now reaches a percent level !

• Application to SDSS DR7 LRG
simultaneous constraint on  DA, H & f

• Impact of scale-dependent (non-linear) galaxy bias

{

remaining final issue


