4th-6th Nov. 2010 4th KIAS workshop

Baryon Acoustic Oscillations in 2D

Theoretical Issues and Observational Prospects

Atsushi Taruya

RESearch Center for the Early Universe (RESCEU), Univ. Tokyo

In collaboration with Takahiro Nishimichi, Shun Saito, Kazuhiro Yamamoto

Plan of talk

Introduction: BAOs as dual cosmological probe
Modeling BAOs from perturbation theory
Anisotropic BAOs from SDSS DR7 LRG samples
Summary

Introduction

Baryon Acoustic Oscillations (BAOs)

 Acoustic signature of primeval baryon-photon fluid imprinted on galaxy clustering

• Characteristic scale: r~100 Mpc/h, k~0.06 Mpc/h \rightarrow standard ruler

unique tool to trace cosmic expansion history

Detection : SDSS, 2dF On-going / up-coming :

BOSS, Wiggle-z, HETDEX, SuMIRe-PFS, Euclid, WFIRST, ... etc.

BAOs as dual cosmological probe

Observed galaxy clustering pattern is apparently distorted in two ways:

Alcock & Paczynski effect

Using BAO as standard ruler, H(Z) & DA(Z) can be measured simultaneously [e.g., Seo & Eisenstein ('03); Hu & Haiman ('03); Blake & Glazebrook ('03); Shoji et al.('09)]

BAOs as dual cosmological probe

Observed galaxy clustering pattern is apparently distorted in two ways:

Alcock & Paczynski effect
 Redshift distortion effect

Measurement of f(z) offers a test of gravity on cosmological scales.

Linder ('08); Guzzo et al. ('08); Yamamoto et al. ('08); Song & Dore ('09); Percival & White ('09); White, Song & Percival ('09); Song & Percival ('09)

Practical issues

Precision BAO measurement at a percent level

Accurate theoretical template to determine acoustic scale and/or redshift distortion

Reducing (known) systematics:

Non-linear gravitational evolution
 Non-linear redsfhit distortion
 Galaxy biasing

Small, but non-negligible at a percent level precision

Methodology

... still on-going subjects

Fitting Sophisticated parametric formula and/or hybrid fitting Seo et al. ('08, '09); Padmanabhan & White ('09) Reconstructing Degradation of acoustic features by Zel'dovich approx. Eisenstein et al. ('07); Huff et al. ('07); Padmanabhan et al. ('09)

Forward modeling

Perturbation theory (PT) based modeling of BAOs

Crocce & Scoccimarro ('06ab,'08); Jeong & Komatsu ('06,'09); Matsubara ('08ab); AT & Hiramatsu ('08); AT et al. ('09, '10); etc. ...

Perturbation theory: Reloaded

CDM+baryon = pressureless & irrotational fluid

Juszkiewicz ('81), Vishniac ('83), Goroff et al. ('86), Suto & Sasaki ('91), Jain & Bertschinger ('94), ...

Basic
eqs.
$$\frac{\partial \delta}{\partial t} + \frac{1}{a} \vec{\nabla} \cdot \left[(1+\delta) \vec{\nabla} \right] = 0$$
$$\frac{\partial \vec{\nabla}}{\partial t} + \frac{\dot{a}}{a} \vec{\nabla} + \frac{1}{a} (\vec{\nabla} \cdot \vec{\nabla}) \vec{\nabla} = -\frac{1}{a} \vec{\nabla} \Phi$$
$$\frac{1}{a^2} \nabla^2 \Phi = 4\pi G \bar{\rho}_m \delta$$

Perturbative
expansion
$$\delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \cdots$$
$$(\delta(\mathbf{k}; z)\delta(\mathbf{k}'; z)) = (2\pi)^3 \delta_D(\mathbf{k} + \mathbf{k}') P(k; z)$$

Perturbation theory: Revolution

Reorganizing standard PT expansions in terms of nonperturbative quantities (renomalized PT)

Development of improved PT

Lagrangian PT Matsubara ('08ab)
Time-RG Pietroni ('08)
Closure approx. AT & Hiramatsu ('08); AT et al. ('09)
Gamma expansion Bernardeau et al. ('09) Crocce & Scoccimarro ('06ab, '08)

Standard PT vs. Improved PT

Standard PT

$$P(k) = P^{(11)}(k) + \left(P^{(22)}(k) + P^{(13)}(k)\right) + \left(P^{(33)}(k) + P^{(24)}(k) + P^{(15)}(k)\right) + \cdots$$

Linear (tree) I-loop $\propto D^2(t) \qquad \propto D^4(t)$ $\frac{\text{2-loop}}{\propto D^6(t)}$

Naive expansion scheme regarding $\,\delta\,$ as a small expansion parameter

Improved PT (closure approx.)

propagator

$$P(k;t) = G^{2}(k|t,t_{0})P(k;t_{0}) + \int dt_{1} \int dt_{2} G(k|t_{1},t_{0})G(k|t_{2},t_{0}) \Phi_{1-\text{loop}}[P(k);t_{1},t_{2}]$$

Non-perturbative effect is incorporated through propagator

• Iteratively evaluate MC term (irreducible loop diagrams) by Born approx.

Convergence properties

All corrections become comparable at low-z.
Positivity is not guaranteed.

Corrections from MC terms are positive and localized, and shifted to higher-k as increasing the order of Born approx.

Improved PT in real space

AT, Nishimichi, Saito & Hiramatsu ('09)

Modeling redshift distortion

Definition

Observed clustering pattern is apparently distorted.

• Anisotropy (2D power spectrum)

 $P(k) \longrightarrow P^{(S)}(k, \mu); \quad \mu \equiv (\vec{\mathbf{k}} \cdot \hat{\mathbf{z}}) / |\vec{\mathbf{k}}|$

• Power spectrum amplitude

Enhancement Kaiser effect (small-k) Finger-of-God effect Suppression (large-k)

Redshift-space power spectrum

Exact expression

$$P^{(S)}(\mathbf{k}) = \int d^3 \mathbf{x} \, e^{i\mathbf{k}\cdot\mathbf{x}} \left\langle e^{-ik\mu\,\Delta u_z} \left\{ \delta(\mathbf{r}) - \nabla_z u_z(\mathbf{r}) \right\} \left\{ \delta(\mathbf{r}') - \nabla_z u_z(\mathbf{r}') \right\} \right\rangle$$

$$u_z = (\vec{\mathbf{v}} \cdot \hat{\mathbf{z}}) / (a H)$$
$$\Delta u_z = u_z(\mathbf{r}) - u_z(\mathbf{r}')$$

 $\mathbf{x} = \mathbf{r} - \mathbf{r}'$

(Popular) analytic model

e.g., Scoccimarro (2004)

$$P^{(S)}(k,\mu) = e^{-(k\mu\sigma_v)^2} \left[P_{\delta\delta}(k) - 2\,\mu^2 \,P_{\delta\theta}(k) + \mu^4 \,P_{\theta\theta}(k) \right]$$

Finger of God (non-linear) Kaiser

fitting parameter (ID velocity dispersion)

... physical, but still empirical formula

Missing terms, found

From low-k expansion of the exact formula,

$$P^{(S)}(k,\mu) = e^{-(k\mu f \sigma_{v})^{2}} \left[P_{\delta\delta}(k) - 2f\mu^{2}P_{\delta\theta}(k) + f^{2}\mu^{4}P_{\theta\theta}(k) + A(k,\mu) + B(k,\mu) \right]$$
Leading-order corrections to the mode-coupling btw velocity & density
$$Non-Gaussian correction \quad A(k,\mu) = -2k\mu \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \frac{p_{z}}{p^{2}} B_{\sigma}(\mathbf{p},\mathbf{k}-\mathbf{p},-\mathbf{k}) \quad \text{anti-phase oscillation} \\ \left\langle \theta(\mathbf{k}_{1}) \left\{ \delta(\mathbf{k}_{2}) - \mu_{2}^{2}\theta(\mathbf{k}_{2}) \right\} \left\{ \delta(\mathbf{k}_{3}) - \mu_{3}^{2}\theta(\mathbf{k}_{3}) \right\} \right\rangle = (2\pi)^{3}\delta_{D}(\mathbf{k}_{123}) B_{\sigma}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}) \\ Gaussian correction \quad B(k,\mu) = (k\mu)^{2} \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} F(\mathbf{p})F(\mathbf{k}-\mathbf{p}) \quad \text{small in amplitude} \\ (<|-2\%\rangle) \quad These also$$

 $\delta\theta(p) - \frac{1}{p^2}P_{\theta\theta}(p)$

depend on 'f'

 $F(\boldsymbol{p}) \equiv \overline{p^2}$

Role of corrections

Including corrections

$$P^{(\mathrm{S})}(k,\mu) = \sum_{\ell=\mathrm{even}} P_{\ell}^{(\mathrm{S})}(k) \,\mathcal{P}_{\ell}(\mu)$$

AT, Nishimichi & Saito ('10)

Role of corrections

Neglecting corrections

$$P^{(\mathrm{S})}(k,\mu) = \sum_{\ell=\mathrm{even}} P_{\ell}^{(\mathrm{S})}(k) \,\mathcal{P}_{\ell}(\mu)$$

Even in 1% convergence limit, discrepancy manifest (few % in P0, >5% in P2)

Check: recovery of DA, H & f

AT, Nishimichi & Saito ('10)

Impacts on future surveys

Fisher matrix analysis using full 2D information

SDSS DR7 LRG samples

Saito, Nishimichi, AT & Yamamoto ('10) in prep.

Constraints on DA, H&f

Saito, Nishimichi, AT & Yamamoto ('10) in prep.

Summary

Modeling and predicting BAOs from perturbation theory

{ gravitational evolution
 redshift distortion

PT-based model has been making rapid progress and accuracy of prediction now reaches a percent level !

 Application to SDSS DR7 LRG \rightarrow simultaneous constraint on DA, H & f Impact of scale-dependent (non-linear) galaxy bias ······ remaining final issue