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Galaxy Clusters
* Most massive gravitationally bound objects
— 10714 ~ 10715 M sun (100 — 1000 galaxies)
— Strongest S/N of the lensing signals

— DM plays a dominant role to the formation < for a galaxy,
baryonic effect 1s important

— Suitable for testing the CDM scenarios on small scales <IMpc

« Astronomically very interesting objects to study
— Seen with various wavelengths (radio, optical, X-ray)

— Connection between DM (gravity), hot gas (baryonic matter)
and galaxies (a tiny part of baryons); 100:10:1

Coma Cluster

thical on X_ray 0.52.0 keV

-
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Cosmological Use of Clusters:
Halo Mass Function

Tiny density fluctuations at z~1000: §_~10"-3 Gaussian SGG{d density
fluctuations

_|_
Spherical collapse model
(or N-body simulation)

Gravitational instability ‘

(gravity <> cosmic expansion)

. . Mass function:
0, +2Ho, —4nGp, 0, =0 )

dn ( 0. )
- exp| —
dmM

0% (M)

(@cluster mass scales
Halo formation at z~0: 6, >>1

The mass function can
» ‘ ‘ o O, be a powerful probe of

cosmology (e.g. DE)



Halo mass function (contd.)

Angular number counts
of clusters
d’N _, dV dn
dzdM ° dzdQ dM
DE equation of state: w
e Dae
pde

— pg. < 1+ 2™ for w = const.

Note that the right plot uses oy
normalization: the same number
density of clusters at present for
all models

dN/dz [4x103 deg?]
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Issue: cluster mass

In a simulation world. ... .
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n(>M) (h3 Mpc-3)

Cosmological Use of Clusters:
Halo Mass Function
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(or N-body simulation)

¥

Mass function: n(>M)

dn 5’
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(@cluster mass scales

The mass function can
be a powerful probe of
cosmology (e.g. DE)



Cluster mass (contd.)

* In areal world, there 1s no unique definition of cluster
mass; no clear boundary with the surrounding structures
— Need to estimate the mass such that the definition 1s closer to the
way used in simulations; €.g. spherical overdensity mass
* Have to infer cluster masses (including DM) from the
observables (optical, X-ray, lensing)

* Cluster counting experiment requires the well-calibrated
mass-observable relation for cosmology

— For future surveys (e.g. SPT-like survey with 4000 deg”2), the
mass proxy relation needs to be known to a few % accuracy
S ~0.01



Vikhlinin et al. 2009:

Chandra

QM = 025, Q/\ =0.
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State-of-the-art mass proxy
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Internal structure of halo

« Simulation-based predictions: the appearance of a
characteristic, universal density profile (Navarro, Frenk &

White 96, 97; NFW profile) AR
—\ | FromJing & Siito 99 | 3
\Z | \
+ 4 .
t
» 1 .lr/rzm 1

NFW profile

: Py
Pnew (1) =
NEW (rir)(1+r/r)?

Outer: pxr”-3
Inner: poxr”-1

In addition, halo shape 1s by nature triaxial (Jing & Suto 01)



NFW profile

 An NFW profile 1s specified by 2 parameters

» Useful to express the NFW profile in terms of the
cluster mass and the halo concentration parameter

P;
(r/r)(1+rlr)?

Pnrw (1) =

4
M, = Tﬂ r2p, A :defines the halo boundary for a given A

M, = | 4mr*dr pypy (r) < sets the interior mass of Pypy to M,
L r<ry

- Pnpw (1M c)  (note:c, =1, /1)

* Can infer the halo mass from the measured halo profile




“Shape” of dark matter halo

Mass accretion onto a cluster
region 1s preferentially along the
surrounding filamentary
structures

Therefore, the mass accretion 1s
not spherical

Shape of dark matter halos is
triaxial by nature, even in a
statistical sense

A triaxial halo model gives a
better fit to simulated halos (Jing

& Suto 01) From H. Yahagi (Kyoto U.)



Gravitational Lensing
= method to “see” invisibles

Galaxy Cluster Abell 2218 HST « WFPC2
NASA, A. Fruchter and the ERO Team (STScl) * STScl-PRC00-08




Note: strong and weak lensing

*Strong Lensin @
.g = o ® . © o ©
— Multiple Images @ ©0 o ® 0 ®
: 0
— Large Arcs, Ring . *° o —)‘© ()B
— Obvious Distortion @e oo ® o O 6
° o
True Background Lensed Image
*Weak Lensin
. .g &, ™ ®
— Slight Stretching / 0 / © -
— Distortion small Q _> a ( N
compared to 1nitial shape Q @o 5 ? 0 o Y
— Statistical lensing QQ /a
. . True Background Lensed Image
These two regime lensing > to center
are very complementary! Nolensing e Flexion Seene
The combination allows to LT
probe the entire region of ' ‘ ‘ ‘ ¢
cluster (Broadhurst, MT+05) L
Large-scale Substructure, Cluster and
structure outskirts of halos galaxy cores




Measuring shear (contd.)

Kaiser, Squires & Broadhurst 95

 In reality source galaxy has intrinsic shape: [g[~0.3

e Step I: Quantify the shape of
¥ cach galaxy in terms of its
surface brightness profile

obs
Y. =Y, TE;

. <l B | Step 2: If the mtrinsic shapes
‘ - . o ) B have random orientations

o\’ . . . i a ¢ : = == 1

‘ I « To make an accurate measurement of the lensing

shearing effect, we need

— High-quality image to measure galaxy shapes

— Higher number density of distant galaxies (i.e., deep imaging
data) to reduce the intrinsic ellip. contam.




Subaru Telescope:
Best facility for WL measurement

¥ Only Subaru has the prime focus
camera, Suprime-Cam, among other

8-10m class telescope: the wide
field-of-view (0.25 sq deg)

#* Excellent image quality allows
accurate shape measurements of
galaxies

#¥* Deep images allow the use of many L ) ]lhlﬁ ~Y
galaxies for the WL: higher spatial 2 ~ -

. S g 1 -
resolution "3\ ke

-
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Subaru capability for WL measurement

_Subaru S-Cam

CFHT (blue: mass)
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e Subaru (S-Cam) 1s currently the best instrument for measuring
WL signal, thanks to the excellent image quality



Subaru foj

Example: A1689 (z=0.18)

’ : "’ji.r-v':'_lv'.';more than'lOO m‘ultlple g’alax-les
S (Broadhurst et al. 04) .

e I* Virial radius of a
B massive cluster
R ~Mpc

@8 Subaru FoV
® covers the virial
region of a



The best case: A1689 (z=0.18)
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LoCusSS
(The Local Cluster Substructure Survey)

0 Subaru

[AV]
X
[N
o
&

International collaboration (PI:
G.P.Smith; Europe, Japan, USA)

Explore a systematic study of
~100 X-ray luminous clusters in
the redshift range 0.15-0.3

The multi-wavelengths: Subaru,
Palomar, VLT, UKIRT, HST,
GALEX, Spitzer, Chandra,
XMM, SZA, MMT/Hectospec

Lx/E(2)"2.7 [erg/s, 0.1-2.4keV]

cluster redshift: z

Subaru/Suprime-Cam data for ~30 clusters (24 have 2 filter data)
- Unbiased cluster sample (not based on strong lensing)
- The FoV of S-Cam matches the virial region of clusters at the target redshifts
(~0.2)
- Add more clusters: ~60 clusters within this year



Multi-wavelength study of
galaxy clusters

— Spitzer

SZA
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DEC [deg]
—-13.6

1D shear fitting: an example of A209

\ A209
02 r \ i 1
\ best—fitting NFW Pnrw & >
\ (rir)d+r/r)
0.1 - A\ — — best—fitting SIS ’

A209

—-13.5

—13.7




Example 2: A2261

A2261

N
0.2 N
N\

best—fitting NFW

— — - best—fitting SIS

+
o))
0.02
—a—
N\
0.01 F A
! .
0.1 F E
o ! ) . .
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20 r

Virial mass estimation

H H 1
g

* *NFW favored
ANFW/SIS both not acceptable

[ 1Both acceptable

1 2 3} 10 20

SIS 14, -1
M., 5 (10M*n71My)

1
C
Prrw (rir)+ r/rS)2
P Oci
SIS 1”2

1« All clusters: S/N>5

(typically S/N~10)

1+ The mass estimates

depend on the model
assumed for the
fitting

e The virial mass
determination:
accuracy 20-30%

¢ Mypy/Mgg~1.19



] Mass determination
(contd.)

_ A M, = | 4mr*dro(r)
| Onpw (7) T

I’S N

* A best accuracy in M 1s
10-20% when A=500-1000 is
assumed

— Opver the radii the lensing signals
have a largest S/N

* The concentration parameter 1s
most accurately measured for
the virial definition

20‘00 100(.) — 500 l l 260 100
overdensity: A



WL

Msool':(z)z/5 (Mo)

1015

1014

5x10'4

2x10'4

5x1013

WL vs. X-ray (Subaru vs. XMM)
Thiswork' ' S )

. Vikhlinin et al. 09 — - — - -

Nagai et al. 07

12 overlapping samples
Red: relaxed clusters
Blue: unrelaxed ]

Okabe, Zhang, Finoguenov, M]H 10, ApJ

5x10'3

'1 614
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Full use of 2D shear map

_ * The cluster mass distribution 1s far
Oguri, MT, + 10 .
from spherical symmetry, as
A2300 predicted from the collisionless
'--"'/ / ’. e / *"\\\\ CDM model.
- o+ Jing & Suto showed that simulated

/ / P f
T _ NN NN halos can be better described by a
5 SN NCR NN triaxial halo model than the
SRR USRS spherical one

t] -
SN L 720 —if.‘.'
* I Projecting the triaxial halo model
| along the l.o.s. gives the 2D mass
density:
k(z,y) = Kspn(C),

12
T T
CQ= 1—6+(1_e)y2’

I
2o
7\'
\

/ .
r = xcosl, + ysinb,,

/

y = —xsinf, + ycosb,,



2D shear fittina

A2390 — 10%
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oIn this particular case, e 2D=1-b/a:
«Note that the i1so-contours of shear amplitudes are not elliptical, needs to solve
the 2D Poisson equation.
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A detection of
halo ellipticity

A significant detection of halo

ellipticity for 18 clusters, at 7o
level compared to the spherical
model

The ellipticity ~0.5 on average
— X-ray 1images show e~0.2-0.3
— @Galaxy scales: e~0.2

— Can exclude MOND?

Remarkable agreement with
the CDM predictions

Not enough to discriminate the
model differences
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offset from BCG [kpc/h]

Halo center, constrained from
lensing, 1s close to the position
of brightest central galaxy

However, some clusters (about
10% fraction) show large
offsets

Imply that the BCG 1s
oscillating around the potential
well for some clusters
Quantify the impact of

systematic errors in the stacked
cluster lensing analysis



Advantage of stacked cluster lensing
obs(e) ycluster(g )+ }/LSS(HZ-)+ 8+(9i)

B projection effect

luster region 1

+
cluster region 3

cluster

less sensitive to

@ @ o ©
projection effect,

1
(v, )(0) = N—lz Eh(a th cluster) (0') = < i uSter>(9) intrinsic alignment,
a=116'1C6



stacked signal : (A%,) [10'5AM Mpc 2]

(az,)

Results: stacked lensing ... vr+10

For Subaru data, only ~10 clusters are enough to obtain the high S/N signals
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PFU Mechanics
WFC

CagacmEeEy |
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f’ ens Frame]
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I/F to the

Hyper Suprime
Camera Project

#* Upgrade the prime focus camera

% Funded, started since 2006

Telescope
Inner Hub

¥* International collaboration: Japan
(NAOJ, IPMU, Tokyo, Tohoku,
Nagoya), Princeton, Taiwan

#* IPMU members (H. Aihara, MT, N.
Yoshida): leading this project

* Field-of-View: ~10xSuprime-Cam
#* Keep the excellent image quality

#* ~2000 sq. deg weak lensing survey
starting from late 2012- (~5 years)

Note: the current WL surveys ~100 sq.
deg (but shallow)
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HSC can ...

Oguri & MT 10

]_O_l = L | ILLBLLLLL - 1 IIIIIII 1 || ||||I| ] IIIIIIII LI ||||||| 1 IIEEI IIIIIII 1 IIIIIII LI ||||||| 1 ||E
107 & = EJ E
S - T + .
1070 =y = X =
x> E e + £ . :
107 ¢ 3 = ‘ E
- 0.2<2<0.3 0.7<z<0.8 . [N 1.2<z<1.3 *
10—5 | |III|I| | l|||ll| 1 1 Ill|||| ‘I“ 1 1HI) | lllllll 1 1 llll||| | IIIIIII‘. | | ||ll||| 1 1 ||I|ll| 1 1 III‘HII [IHRVH]
1 10! 102 1 10! 102 1 10! 102

6 [arcmin]

0 [arcmin]

6 [arcmin]

« HSC can achieve a high S/N detection of stacked WL signals out to z~1.3

« Small-angle signals are from one halo around each LRG (the mean halo
mass and the average shape of mass profile)

» Large-angle signals are from the mass distribution in large-scale structure
surrounding LRGs.



Revealing Dark Energy

Japan is behind in this area
measure the rate of acceleration
~100M galaxies

precision imaging of galaxy shapes
=world class

e precision wide field spectrograph to
measure distances = world leading!

® push the Japanese technology in
precision control, optics, detectors,
materials

® Mitsubishi Electric, Canon, Hamamatsu
“yocera have been involved in R&D




Summary

Gravitational lensing offers a unique means of measuring dark matter
distribution in a cluster

Subaru 1s the best facility for making accurate weak lensing measurements
Measuring cluster masses 1s of critical importance for doing cosmology with
cluster counting statistics

— Various systematic issues need to be carefully studied: projection effect,
miscentering effect, model uncertainty, source redshifts, ....

Radial density profile and shape of dark matter distribution can be used to test
the CDM predictions on small scales that are not constrained by CMB

Carrying out cluster weak lens studies with Subaru data (so far 30 clusters, ~60
clusters until the end of 2010)
— Finding the measured profile 1s consistent with NFW profile
— A significant detection of the dark matter halo ellipticity, consistent with the CDM
prediction
The pilot study in preparation with Subaru HSC survey, aimed at exploring the
nature and properties of DM and DE



