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•  Known as one of fundamental elementary particles, 
involved in SM 

•  Only has weak interactions (no charge and very light), so 
very difficult to directly see 

•  Yet not know much about neutrinos, mass unknown yet 

The Nobel Prize of Physics, 2002  

Prof. Koshiba Prof. Davis 
No doubt neutrinos are very interesting 

particles to explore! 
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Neutrinos didn’t annihilate to photons 

T~0.5MeV: electrons and positrons annihilate 
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T~1eV: matter-radiation equality 
T~0.24eV(~3000K): recombination, CMB 

Hpe →+−     ,γ  n_ν,0~100 cm^-3
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Ωm0 =Ωcdm0 +Ωbaryon0 +Ων 0   

fν ≡
Ων 0

Ωm0
=

mν ,tot

94.1eVΩmh
2 > 0.005

•  The experiments (Kamiokande, SK, SNO, KamLAND) imply 
the total mass, m_tot>0.06 eV; but the mass scale yet unknown 

•  Neutrinos became non-relativistic at redshift when Tν,dec~mν 

–  If m_nu>0.6eV, the neutrino became non-relativistic before 
recombination, therefore larger effect on CMB, vice versa  

•  The cosmological probes measure the total matter density: 
CDM + baryon + massive neutrinos 
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1+ znr ≈189 mν 0.1eV( )



 relativistic matter: a^-4 
 non-relativistic matter: a^-3
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h = 0.71  ⇒   h = 0.65
Ωm = 0.258  ⇒   Ωm = 0.33

The m_nu effect on CMB absorbed by other paras
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Ωm0 = 0.26 →  Ωm0 = 0.33
h = 0.72 →  h = 0.66



•  The m_nu effect on CMB degenerate with h and Ω_m that are 
sensitive to the distance out to z*~1100(Ichikawa+ 05) 

•  WMAP5: CMB alone m_nu,tot<1.3eV; WMAP5 + SN + BAO 
(no galaxy P(k)) m_nu,tot<0.6eV (CMB + geometrical probes) 

•  Seems best-available constraint from this method; if m_nu<0.6eV, 
as neutrinos become non-rel. btw z~1100 and today
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WMAP (z~10^3) 

LSS (0<z<3) 

SDSS (Tegmark etal03)  

•  Given the precise CMB constraints, combining CMB and LSS allows to 
probe the evolution of structure formation over z=[0,10^3], thereby 
tightening the neutrino mass constraints (Hu, Eisenstein & Tegmark 98)
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•  Neutrinos are very light compared to CDM/baryon 
•  The phase-space distribution of neutrinos, even after 

decoupling, obeys the relativistic FD dist. (specified by m_ν) 
•  The thermal velocity at redshift z relevant for LSS is larger than 

the gravity induced peculiar velocity 

–  Even a massive cluster can’t much trap neutrinos 
•  The free-streaming scale, the distance neutrino can travel with 

the thermal vel. during cosmic expansion 
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 λ_fs is a 100Mpc scale, similar to BAO scales



•  A mixed DM model: Structure formation is induced by the 
density fluctuations of total matter   

•  The neutrinos slow down LSS on small scales 
–  On large scales λ>λfs, the neutrinos can grow together with CDM 

–  On small scales λ<λfs, the neutrinos are smooth, δν=0, therefore 
weaker gravitational force compared to a pure CDM case 

)(xδ

ν

Total matter perturbations can grow! 

CDM CDM 

ν λ < λfs λ > λfs 

Suppresses growth of total 
matter perturbations  
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˙ ̇ δ cb + 2H ˙ δ cb − 4πGρ m(1− fν )δcb = 0, δν ≈ 0

€ 

δm =
ρ cδc + ρ bδb + ρ νδν

ρ c + ρ b + ρ ν
≡ fcδc + fbδb + fνδν
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δc = δb = δν
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The suppression is 
stronger at lower 
redshifts and at larger k 
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 Hu et al 98
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ΔP(k)
Pν =0(k) z ~ 0, k >> k _ fs

~ −8 fν  
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ΔP(k)
Pν =0(k) z ~ 0, k >> k _ fs

~ −8 fν  

•  A more realistic f_nu~0.01 (m_nu~0.1eV): the neutrinos 
became non-relativistic after z~10^3 

•  The power spectrum amplitude is suppressed by ~8%



From Tegmark+04 

 k_fs~0.03h/Mpc 
 for m_ν~0.1eV

Non-lnearities



Modeling NL P(k) for a MDM model 
(Saito, MT, Taruya PRL 08) 
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δcdm+baryon ≡ δcb = δcb
(1) + δcb

(2) + δcb
(3) +
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δν ≈ δν
(1)

•  The first attempt to analytically model P(k) in the weakly NL 
regime, based on cosmological perturbation theory (PT) 

•  Have to work with multi-component fluid system 
– NL clustering on small scales is mainly driven by CDM + baryon 
– Neutrinos with light masses remain to stay in the linear regime 

(can’t be much trapped by halos) 

•  NL total matter P(k) for a MDM model up to the 1-loop correct.   

 Apply PT 

 Linear theory (Solve Boltzmann eqns) 
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WFMOS achieves a few % accuracy in 
measuring P(k) at each k bins over  k=[0.03,1] 
The suppression effect on P(k) due to neutrinos is 
enhanced in the weakly nonlinear regime
The PT model explicitly tells the valid k-range of 
linear theory. PT can be applied to larger  k_max 
The BAO peak locations are not much moved by 
the neutrino effect

Saito, MT, Taruya, PRL, 2008



•  Different paras affect P(k) in fairly different ways 
•  Combining galaxy survey with CMB is an efficient way to break 

degeneracies btw f_nu, n_s and alpha (MT, Komatsu & Futamase 2005) 



CDM M_nu=0.6eV M_nu=0.3eV
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256^3 CDM particles + 512^3 neutrino particles

The simulations confirmed our finding, 
the enhancement in neutrino suppression 
in the NL regime 





Ichiki, MT, Takahashi soon  
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observables 

•  Arises from total matter 
clustering 
–  Not affected by galaxy bias 

uncertainty 
•  Shear amplitudes: 

–  Cluster scale: γ~O(0.1) 
–  Cosmic shear: γ~O(0.01) 

•  Need numerous (~108) galaxies 
for the precise measurements 
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γ(θ)∝Ωm0 dzL0

zS∫ dLS (zL ,zS )dL (zL )
dS (zS )

δ(zL ,θ )       

 for a source galaxy at zs 

•  Lensing efficiency function: Wgl 
– Overall amplitude is proportional to Ωm, i.e. Ωde if combined 

with CMB or a flat universe is a prior assumed 
–  Sensitive to Hubble expansion through dA, i.e. DE 
– Depends on source redshift – uncertainty in weak lensing 

measurements if redshift info is not available 

•  Mass clustering part: δ 
–  Sensitive to primordial power spectrum (amplitude and shape) 
– Neutrinos suppress the growth of mass clustering 
–  Redshift history of the growth rate is sensitive to DE 



Fu+0712.0884  

•  ~60 sq deg^2 
 (effectively ~34deg^2) 
•  i’_AB~24.5, 

<z>~0.9 
•  n(z) fairly 

accurately known: 
calibrate n(z) with 
the CFHT deep 
survey and the 
VVSD 

•  ~20σ detection, 
over a range of 
few arcminutes to 
a few degrees 



Ichiki, MT, Takahashi soon



Peacock & Dodds 96 
For a CDM case

Also see Jain, Mo & White 95
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WMAP5+SN+BAO: m_nu<0.75eV
WMAP5: m_nu<1.1 eV(95%CL)

WL+WMAP5+SN+BAO: m_nu<0.54eV

flat LambdaCDM + total neutrino mass

Ichiki, MT, Takahashi 
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WL+WMAP5
WL+WMAP5+SN+BAO

Combining different probes can improve para constraints

Ichiki, MT, Takahashi 



1D likelihood

WMAP5

WMAP5+WL
+BAO+SN 



•  The finite-mass neutrinos cause characteristic suppression 
in the growth of total matter clustering 

•  Combining CMB with probes of large-scale structures can 
be a powerful way of measuring the neutrino effect 

•  We developed the PT model to describe the nonlinear P(k) 
in the weakly nonlinear regime 

•  We compared the model prediction with the latest WL 
data, CFHT data, to constrain neutrino masses 
– M_nu=0.54 eV(95%CL) for WL+WMAP5+SN+BAO 
– M_nu=1.1eV for WMAP5


