Three-point correlation functions and bispectra of SDSS galaxies: implications for linear and quadratic biasing coefficients

Yasushi Suto

Department of Physics University of Tokyo

The 2nd KIAS Workshop on **COSMOLOGY AND STRUCTURE FORMATION** Sept. 20-21, 2006, KIAS, Seoul

Collaborators

Issha Kayo, Suto, Nichol, Pan, Szapudi, Connolly, Gardner, Jain, Kulkarni, Matsubara, Sheth, Szalay, and Brinkmann

- Three-Point Correlation Functions of SDSS Galaxies in Redshift Space: Morphology, Color, and Luminosity Dependence
- PASJ 56(2004)415

Takahiro Nishimichi, Kayo, Hikage, Yahata, Taruya, Jing, Sheth and Suto

 Bispectrum and nonlinear biasing of galaxies: perturbation analysis, numerical simulation and SDSS galaxy clustering

PASJ, submitted (2006)

How galaxies trace mass? galaxy biasing

SDSS significantly advanced our knowledge of galaxy distribution on large scales

how to relate it to mass (dark matter) distribution ?

empirical perturbation expansion

$$\delta_{gal} = b_1 \delta_{mass} + \frac{b_2}{2} \delta_{mass}^2 + \cdots$$

often consider the linear term alone (for two-point statistics, or in linear regimes)
 higher-order terms ? ⇒ higher-order statistics

Three-point correlation function

 $dP_{123} = n^{3} [1 + \xi(s_{12}) + \xi(s_{12}) + \xi(s_{12}) + \zeta(s_{12}) + \zeta(s_{12}, s_{23}, s_{31})] dV_{1} dV_{2} dV_{3}$

vanishes for Gaussian field

- The simplest statistics to probe the non-Gaussianity (phase information)
- how galaxies trace mass (biasing) ?

$$Q = \frac{\zeta(s_1, s_2, s_3)}{\xi(s_1)\xi(s_2) + \xi(s_2)\xi(s_3) + \xi(s_3)\xi(s_1)}$$

3pt correlation functions of SDSS galaxies *in redshift space*

Clear luminosity, morphology and color dependences of (2pt) bias disappear in 3pt amplitude Kayo et al. PASJ 56(2004) 415

nonlinearity of galaxy bias required

• if linear bias:

$$\delta_{gal} = b_1 \delta_{mass} \Rightarrow Q_{gal} = \frac{Q_{mass}}{b_1}$$

this is clearly inconsistent with SDSS data !even in nonlinear bias:

$$\left| \delta_{gal} = b_1 \delta_{mass} + \frac{b_2}{2} \delta_{mass}^2 + \dots \Rightarrow Q_{gal} = \frac{1}{b_1} \left[Q_{mass} + \frac{b_2}{b_1} \right] \right|$$

still, dependence on b_1 is expected $Q = Q(X_1) \Rightarrow correlation between <math>b_1 \& b_2$

b₂-b₁correlation: perturbation model

Nishimichi et al. (2006), submitted to PASJMo & White(1996)Mo, Jing & White(1997)Sheth & Tormen(1999)Cooray & Sheth(2002)

 Q_b is insensitive to b_1

Nishimichi et al. (2006)

SDSS galaxies and simulated halos

SDSS color- selected	g - r < 0.86 (blue) g - r > 0.86 (red)	NYU-VAGC
SDSS luminosity threshold	M _{r max} = 18.0,18.5, ,21.5, and 22.0 (9 samples)	(based on DR4)
Mass- selected halos	< $1.2 \times 10^{13} h^{-1} M_{sun}$ (S) > $1.2 \times 10^{13} h^{-1} M_{sun}$ (L) > $6.7 \times 10^{13} h^{-1} M_{sun}$ (LL)	N=512 ³ N-body sim. (Jing & Suto 1998, 2002)
HOD mock galaxies	Parameters adjusted to reproduce observed w(r) (Zehavi et al. 2005)	+ FOF halo finder+ HOD code (Skibba et al. 2006)

Power spectrum and bispectrum

linear bias:

$$b_1(k) \equiv \sqrt{\frac{P_{gal}(k)}{P_{mass}(k)}}$$

Q for equilateral triangles (k₁=k₂=k₃):

$$B_{gal}(k_1,k_2,k_3)$$

$$P_{gal}(k_1)P_{gal}(k_2) + P_{gal}(k_2)P_{gal}(k_3) + P_{gal}(k_3)P_{gal}(k_1)$$

quadratic bias:

$$Q_{gal} = \frac{1}{b_1} \left[Q_{mass} + \frac{b_2}{b_1} \right]$$

b₂/b₁ against b₁ for SDSS galaxies and halo-occupation-distribution model

both SDSS galaxies and HOD models suggest a clear trend of b_2/b_1 vs. b_1 fairly insensitive to bias models

Nishimichi et al. (2006)

Summary and Conclusions insensitivity of Q to b₁ in linear regime confirmed in k-space for SDSS galaxies qualitatively explained in analytic models **nonzero** $b_2 \neq linear$ bias model) is the key • a generic correlation between b_1 and b_2/b_1 redshift-space distortion is a secondary effect Beyond the linear bias model nonlinearity in biasing revealed toward better understanding of mass distribution? **goal:** b_n as an explicit function of b_1 ?