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1. Cosmological perturbation theory
Methods:

e Relativistic:
1. Einstein equations (Lifshitz 1946)
2. Covariant equations (1 + 3, u,; Hawking 1966)
3. ADM equations (3 + 1, n,; Bardeen 1980)
4. Action formulation (Lukash 1980; Mukhanov 1988)

e Newtonian:
1. Hydrodynamic equations (Bonnor 1957)
* Relativistic-Newtonian correspondence in the zero-pressure case.
* True even to the second order!
Three perturbation types:
1. Scalar-type: density fluctuations
2. Vector-type: rotation
3. Tensor-type: gravitational waves
% To linear-order, decouple in Friedmann background
* Couple to the second order!
Classical Evolution:
1. Scalar-type: super-sound-horizon scale conservation
2. Rotation: angular momentum conservation
3. Gravitational waves: super-horizon scale conservation
* True even to the second order!




“The theory of linear (i.e., small) perturbations of the expanding, isotropic, and ho-
mogeneous Friedmann cosmology springs into existence virtually full-grown with the
work of Lifshitz (1946).”

Press and Vishniac (1980)



Evgenit  Mikhatlovich Lifshitz (105 -1988)
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Why linear theory?:

1. The CMB temperature anisotropies are very small % ~ 1077,

2. The large-scale clustering of galaxies are approximately linear as the scale becomes large.
Our own homogeneous and isotropic background world model relies on this assumption.

Observations are not inconsistent with the assumption.

If the fluctuation is on ~ 107? level, Taylor’s series theorem guarantees the non-linear terms
are small ~ 10710,

Still, considering that the basic equations are fully nonlinear the nonlinearities exist always.
The point is whether we can ignore (or tolerate) the level of nonlinearities.

May be we can assume linearity in the early universe and in the large-scale in the present era.
If the situation is linear, then we can handle both physics and mathematics very reliably.

“The evolution of linear perturbations of FRW models has been discussed by a large
number of authors and is very nearly a closed book.”

George Efstathiou (1989)



Perturbed Friedmann world model:

Metric:
ds* = —a* (1 + 2”’) dn* — 2a*(B.o + BY)dndx®
Ha {q‘” b < 2“’”) + 27,5 +2C ”f + 20}3] dxda”.

(| 3)

Ell(‘.‘-l'g\’ momentum tensor:

T =—p—0p, TP=(u+p)(—va+ol), T§=(p+dp)ds+II5

Linear perturbation assumes all perturbation variables are small.

Thus, ignore any quadratic and higher-order combination of perturbation variables.

Zero-pressure, irrotational fluid:

0~ 70 _ n _ a
70— —p, To=li=T2
Temporal comoving gauge without rotation gives 79 = 0.

Newtonian vs. Relativistic:

o+ 22() —4A7Guo = 0.

a

% Coincides in the zero-pressure case.
Energy density g = mass density o in the Newtonian case.



In the presence of pressure:

Comoving gauge: (v = 0)

a

) 1 w H‘Z 0.3 ; i A
+(3c2 — 5w)A | 6, = T [ ( ( E (L) } — 2=0, = stresses.
| a a’

a’H p+p) \ H ’
% Valid for general K, A, and time varying p = p(p); w = ﬁ 2 = ﬁ
% Pressure is purely relativistic even to the linear order.
Synchronous gauge: (« = 0)
Incorrect one in the synchronous gauge (a = 0) (for K =0 = A, w = const., no stress):

. A ‘
0+2H6+ | — CEP —4ArGu(l +w)(1 + 3w)|d = 0.

: . A . ; ;
& + (24 3¢ — 6w)HS, + | — (.:2—2 — 4rGu(l — 6¢2 + 8w — 3w?) + 12(w — ¢2)

K
a?

(6)

Weinberg (72). Peebles (93), Coles-Lucchin (95,02), Moss (96), Padmanabhan (96). Longair (98). Peacock (99). ...

Apparently, this is a popular error in textbooks. For corrections, see.

% Due to the presence of gauge modes, it is not possible to derive a second order differential

equation in the presence of pressure even in the large-scale limit!

1Gen. Rel. Grav. 23, 235 (1991); 31, 1131 (1999).
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“the linear perturbations are so surprisingly simple that a perturbation analysis accu-
rate to second order may be feasible ...”

Sachs and Wolfe (1967)



Perturbed action: (Lukash 1980; Mukhanov 1988)

e i . g 5 a4 , :
52S = 5/(_13Q ((I)Z — (:i-—,;@'“@_“) dtd®z,
a-—

where

[ @ = ipy 0= % 4 — 2 (fluid)

Comoving gauge

{ d=gs Q=% A—1 (field)
Y>.Uniform-field gauge

le=c) Q=g d&-1 (@W

( T ’7G

H

Yo =@ —aHv and @sy = ¢ — T0¢: gauge-invariant combinations.

P
* Generalized gravity theories as well!

Equation of motion (Field-Shepley 1968) v = z® and z = a/Q:

1 g = o\ A 1
(a‘ngD) = (‘24—,)- = — [U”
2

|
N
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‘*_t_l\::
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N~
&
| — |
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>Q a2z
Large-scale solution:
N
®(x,t) =C(x) — D —
(x,t) = C() ~ D(x) | =55

Growing mode in expanding phase
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Unified Analyses in Generalized f(¢, R) gravity:?

1. Generalized f(¢, R) gravity:

S = / B f(o,R) — %w(g’g)gﬁ-f—f b.—VI(d) + L((.)] V—gd'z. (10)

2. Tachyonic generalization: X = %c;grcg(
y 1 - - - 8
S = / {E'f(( R, X) + L, —gd*z. (11)

3. String corrections:

L((') = f((b) {Cl (éab(ﬂéabnd — 4ﬁubﬁﬂb + j?2) + (52@“%5.0-(;5.!; + C:.SC,B:”.';.QBJJ(;)J) + (54((.5'“ qg.u )2] i

(12)
4. String axion coupling:
Fo = ARy, Rusey (13
We can always derive a unified form:
628 = %/a“‘Q ((bg — (-51;12@”(1)_“) dtd*z. (14)

* Perhaps “surprisingly simple” indeed!

2Phys. Rev. D 71, 063536 (2005).
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2. Two theories of gravity
e Newton (1647-1727): “Philosophiae naturalis principia mathematica” (1687)

“But hitherto I have not been able to discover the cause of those properties of gravity
from phaenomena, and I frame no hypotheses; for whatever is not deduced from the
phaenomena, is to be called an hypotheses; an hypotheses, whether metaphysical or
physical, whether of occult qualities or mechanical, have no place in experimental
philosophy. ...And to us it is enough that gravity does really exist, and act according
to the laws which we have explained, and abundantly serves to account for all the
motions of the celestial bodies, and of our sea [sun?].”

[saac Newton (1713) @
On this regard, Einstein’s gravity is no better.

e Einstein (1879-1955): “Die Feldgleichungen der Gravitation” (1915) *
“Let us put

1
G-im = =k T-}'m = _Q'QHN.T

[where G, is the Ricci tensor].”

% In practice, however, Einstein’s gravity provides much better perspective.

“Newton, 1., 1713, The mathematical principles of natural philosophy, 2nd edition. Book III, General Scholium: Translated into English by
Motte, A. in 1729. 1962 (University of California Press).

‘Einstein. A., Preuss. Akad. Wiss. Berlin. Sitzber.. 844-847 (1915); Translated in Misner. C. W.. Thorne. K. S.. and Wheeler, J. A.. 1973.
Gravitation, (Freeman and Company) p. 433.



Newton’s gravity:

e Non-relativistic (no c)

— Action at a distance, violates causality
— ¢ — oo limit of Einstein gravity
— No horizon

— Static nature
e No strong pressure allowed
e No strong gravity allowed
e No gravitational waves
e Incomplete and inconsistent

Einstein’s gravity:

e Relativistic gravity
e Strong gravity, dynamic
e Simplest

* The two theories give the same descriptions for the cosmological world model
and its linear structures.

13



World model: spatially homogeneous and isotropic world model

a: 871G const. A »
2= 3 H~ 03 —|—§, o< a, (15)
e Relativistic (Friedmann 1922) °
e Newtonian (Milne-McCrea 1933) °
Structures: iinear perturbations
§+ 226 — 4nGus = 0. (16)
a

e Relativistic (Lifshitz 1946) *
e Newtonian (Bonnor 1957) ®

“It is curious that it took so long for these dynamic models to be discovered after the
(more complex) general relativity models were known.”

G. F. R. Ellis (1989) *

* In fact, the known “Newtonian cosmology” is a GR guided version!
; gy g

*Friedmann A. A., 1922, Zeitschrift fiir Physik, 10, 377; translated in Bernstein J., Feinberg G.. eds, 1986, Cosmological-constants: papers
in modern cosmology. Colmmbia Univ. Press, New York, p. 49

®Milne E. A., 1934, Quart. J. Math., 5, 64;: McCrea W. H., Milne E. A., 1934, Quart. J. Math., 5, 73

TLifshitz E. M., 1946, J. Phys. (USSR). 10, 116

"Bonnor W. B., 1957, MNRAS, 117, 104

“Ellis, G. F. R., 1989, in Einstein and the history of general relativity, ed. D. Howard and J. Stachel (Berlin, Birkhiuser), 367

14



3. Weakly Nonlinear Perturbations

/

“the linear perturbations are so surprisingly simple that a perturbation analysis accu-
rate to second order may be feasible ... One could then judge the domain of validity
of the linear treatment and, more important, gain some insight into the non-linear
effects.”

Sachs and Wolfe (1967) 1©

Sachs, R. K., Wolfe, A. M., ApJ, 147, 73 (1967)



3.1 Second-order:
Relativistic-Newtonian correspondence

Newtonian:
Mass conservation, momentum conservation, Poisson’s equation: 2
A | 1 i
d+-V-u=—-—-V-(du), (17)
a a
1 1 1
u+ Lut 2Vid = —Zu- Vu, (18)
a a a
1 _. R
—V?25® = 47 Géo, (19)
a
give
- a - i 1 o 1
0+2=0 —4rGod = —— [aV - (0u)] + 5V - (u-Vu). (20)
a a* a

* These equations are valid to fully nonlinear order!

Relativistic: (irrotational, K = 0, but for general A)

1

2

Fanof— ArGud = —
a a a’

iy 1  ( 2 _ e
[av : (()u)] -+ _‘)v 3 (u § vu) = C((:; (Evnuaf ige C(t)“’j) ) (21)

% This equation is valid only to the second-order!

Upeebles. P. J. E.. The large-scale structure of the universe (1980).

16



A proof

Fully nonlinear covariant equations:

The energy conservation, Raychaudhury equation become:

;31, + [},é = I,

A |
6 + §92 + 6%G o + 4Gl — A = 0,

hy i

where ji = [i U
~ 9
{1

, 0 =u",, etc. By combining

AR )
(%) 3 (ﬁ) — %6 — 4nGli+ A = 0.

To the second-order perturbation:

By identifying

. . 1
i, = 0p, 00, =-V -u,

a
(22,23) give \

1 1
§+-V-u=—-V-(6u),
a

a

a a

Combining (26,27) or (24) give (21).

temporal comoving (v=0) gauge,
spatial y=0 gauge

1 1 1 . (2 )
-V (il + -(—I-u) +47Gpd = ——=V(u - Vu) — CHes (—211,“_3 - C((fl) :
a? a

(24)

(26)

(27)



Relativistic-Newtonian correspondence *

Background world model:

Relativistic (Friedmann 1922) vs. Newtonian (Milne-McCrea 1934)

a> 8nG const. A L, o
2 =3 ¢~ +§, ooxa ™’ (28)
Linear perturbation:
Relativistic (Lifshitz 1946) vs. Newtonian (Bonnor 1957)
5+ 225 — 4nGos = 0. (29)
(1
Second-order perturbation:
Newtonian (Peebles 1980) vs. Relativistic (Noh-Hwang 2004)
. 7 ) 1 T | i :
§+2%5 - ArGod = —— [aV - (0u)] + (—.,V . (u- Vu) +C1os (—Vnm - C‘f:i) . (30)
a a 2 a

Except for the gravitational wave contribution, the relativistic zero-pressure fluid perturbed to
second order in a flat Friedmann background coincides exactly with the Newtonian system.

“the linear perturbations are so surprisingly simple that a perturbation analysis accu-
rate to second order may be feasible using the methods of Hawking (1966)"
Sachs and Wolfe (1967)
covariant equations
ZPhys. Rev. D 69, 104011 (2004); Class. Quant. Grav. 22, 3181 (2005); Phys. Rev. D 72, 044011 (2005); 73, 044021 (2006).
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Assumptions:

Our relativistic/Newtonian correspondence includes A, but assumes:
1. Flat Friedmann background

. Zero-pressure

. Irrotational

. Single component fluid

. No gravitational waves

S s W N

. Second order in perturbations

* Relaxing any of these assumptions could lead to pure general relativistic effects!
. Background curvature = corrections

. Pressure: relativistic even to the linear order!

. Rotation = corrections

. Multi-component zero-pressure irrotational fluids = Newtonian correspondence!

. Gravitational waves = corrections «—

S Otk W N

. Third order in perturbations = corrections «———

19



3.2 Third-order: L .
Pure general relativistic corrections *

To the third order we identify:

. N N 1
O, = 0o, 00,=-V -u. (31)
a
For pure scalar-type perturbation (22,23) give:
o 3 - 1 1 e -
6+ 236 —ArGps = —— [aV - (Ju)] + 5V - (u- Vu) pure reIatm? corrections
2 {a [2pu—V (A7X)] - V8) — 5V [ (u Vu - luv. u)]
-l——g—apu V(V-u)+ é [u VvV (A_IX)] - iu VX — iXV u, (32}
3a? a’ a? 3a?
3
X=2p,V-u—u-Vy,+ EA_IV c[uV (Vo) +ulp,] . (33)

1e first non-vanishing pure relativistic correction terms are o, order higher than the New-
The first 1 lativist tion t ¢, order higher tl the N
tonian terms (y, = ¢ in the comoving gauge). We have for general A !4

Ho = 0. (34)
The CMB temperature anisotropy gives, for A = 0, near horizon scale '°

o 1 1

— ~ =60 ~ = . po TS 35

™~ 3 4 (35)

BPhys. Rev. D, 72, 044012 (2005).
“Gen. Rel. Grav. 31, 1131 (1999).
PPhys. Rev. D 59. 067302 (1999).



Conclusions in the zero-pressure case:

1.

o

Except for the gravitational wave contribution, equations for the relativistic zero-pressure
fluid in a flat Friedmann background coincide exactly with the previously known New-
tonian equations even to the second-order perturbation.

To the second order. we correctly identify the relativistic density and velocity perturbation
variables. In the relativistic analyses, however, we do not have a relativistic variable which
corresponds to the Newtonian potential to the second order.

. We assume a flat Friedmann background but include the cosmological constant, thus

relevant to currently favoured cosmology.

. We expand the range of applicability of the Newtonian medium without pressure to all

cosmological scales including the super-horizon scale.

. The third-order correction terms, thus the pure general relativistic effects, are of ©,-

order higher than the second-order Newtonian terms.

The corrections terms are independent of the horizon scale and depend only on the
linear order gravitational potential (curvature) perturbation strength.

From the temperature anisotropy of CMB we have % ~ %(5@ ~ %«p,. ~ 1077,

. Therefore, now we can use the large-scale Newtonian numerical simulation

more reliably even as the simulation scale approaches near (and goes beyond)
the horizon.



4. Cosmological post-Newtonian Approach

Perturbation method:

e Perturbation expansion.

e All perturbation variables are small.
e Weakly nonlinear.

e Strong gravity; fully relativistic!

e Valid in all scales!

Post-Newtonian method:

e Abandon geometric spirit of GR: recover the good old absolute space and absolute time.
e Provide GR correction terms in the Newtonian equations of motion.

e Expansion in v/c:

GM  (v\?
VR (L) <l (36)

e Fully nonlinear!

e No strong gravity situation; weakly relativistic.

2
e Valid far inside horizon (/\(“,f ~ ((/LH) < 1.

Complementary!

22



Metric:

Newtonian limit:

. I : ) 1
Yoo = — (1 - C—-QQU) v 90 =0, gij = 04

1PN metric '0:

" 1 1 - —6
o == — [1 -5+ (2U% — 4@)} +:O",
N 1 5 _ :
Goi = —zH+ 07, Minkowski background
1 . |
c*
Cosmological 1PN metric '":
1 1 ; -
.(}(]U = = |:1 o (EQU + (_A (QU_) = 4(I))j| + (9_()1
~ 1 2 -5
o =gl Fi+ 07, Robertson-Walker background
; 1 _
.E)U = (L2 (1 o s —22V) Vij -+ O_'L.
— C® mmm / emm

Y Chandrasekhar., S., 1965, ApJ. 142, 1488.
TPreprint, astro-ph/0507085.



Energy-momentum tensor:

Covariant decomposition:

1
Tap = @ (1 + _H) UaUp + I} (ﬁ'(r.ﬂ'b =+ fjﬂf!) +

where q,u® =0, Tpu’ =0, 75 =0, and Ty = Tpg-
Fluid four vector, u,, follows from u“u, = —1 and u

We introduce
- 1

0
€

Newtonian limit:

1 1 N
pe; (a g) + EV.; (qu ) =0
1 1

a 16

o 1 |
(2 hvio)me (s by a) 2 1
ot «a a a 0o oa

A
—U +4nG (0 — o) = 0.

(J“

* No gauge condition used!

2(-!['"((:_’&{;) + Tab,

.*_ s &U

o, =1, p=p, G=-Qi Tiy=IL;.

. - 1 : 1
— (av;) + E-;:"VJ;’U.; + — (V;p -+ VJ-H{) — —V,:U =i,

(Q*‘|,+H" "‘) =,

% We subtract the Friedmann background equation.

(40)

(41)

(42)
(43)

(44)



1PN equations:

For K =0, we have V = U. In a gauge-ready form (assuming an ideal fluid):

1 1 :
= (@’0") +— (), =0, 1PN order (46)
— (avy)) +—t:3[},z" = —— (l—l——‘2 U p_*
a a 5 0 /
1 I 3 - 1 1 1
1 i U — —
where
1 /1. 1 L : ,
O=p|l4+— —v*4+3U )|, vy =Evi+ = i 4 SEF 4 T+ # v; — Bl . (48)
2\ 2 2|\ 2 0

Metric variables (potentials) U, ® and P; are determined by

A 11 (8 o e
SU +47G (0 — 05) + { [2A<1> —2UAU + (aP',) | +80 + 92U +6=U
a a

az. c | a? L
5 1 3
+87TG ov~ + 5 (QH — anb) + 5 (p — Ph) = U (49)
A 1 7L .. ; a
— b = —=16nGov; + - (—P"’ 44U + 4—U> : (50)
as__ a\a V a P
* We can impose a temporal gauge condition on P""
* 1PN correction terms are %ﬁi ~ :—J 1075 order smaller than the Newtonian terms.



5.

Why Newton’s gravity is reliable

in large-scale cosmological simulations:

Fully relativistic weakly nonlinear perturbation approach:

1. Except for the gravitational wave contribution, equations for the relativistic zero-pressure

fluid in a flat Friedmann background coincide exactly with the previously known New-
tonian equations even to the second-order perturbation.

2. The third-order correction terms, thus the pure general relativistic effects, are of p,-order

higher than the second-order Newtonian terms. These are independent of the horizon
scale, and are small with ¢, ~ 5 x 1077,

Fully nonlinear weakly relativistic post-Newtonian approach:

1
2.

17 2 5 i .
GAL v ~ 107" order smaller than the Newtonian terms.

Re ¢

1PN correction terms are

We cannot rule out possible presence of cumulative effects due to the time-delayed propaga-
tion of the relativistic gravitational field, in contrast to the Newtonian case where changes
in the gravitational field are felt instantaneously.

We provide complete 1PN equations in a gauge-ready form.

* Therefore, we can use Newtonian numerical simulations reliably during matter
dominated era with cosmological constant in nearly all relevant cosmological scales.

'MNRAS 367 1515 (2006).
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